
Learning Vision-and-Language Navigation from YouTube Videos

Kunyang Lin1 2* Peihao Chen1* Diwei Huang1 Thomas H. Li6 Mingkui Tan1 5† Chuang Gan3 4

1South China University of Technology, 2Information Technology R&D Innovation Center of Peking University,
3UMass Amherst, 4MIT-IBM Watson AI Lab, 5Key Laboratory of Big Data and Intelligent Robot, Ministry of Education,

6Peking University Shenzhen Graduate School

Abstract

Vision-and-language navigation (VLN) requires an em-
bodied agent to navigate in realistic 3D environments using
natural language instructions. Existing VLN methods suffer
from training on small-scale environments or unreasonable
path-instruction datasets, limiting the generalization to un-
seen environments. There are massive house tour videos on
YouTube, providing abundant real navigation experiences
and layout information. However, these videos have not
been explored for VLN before. In this paper, we propose
to learn an agent from these videos by creating a large-
scale dataset which comprises reasonable path-instruction
pairs from house tour videos and pre-training the agent on
it. To achieve this, we have to tackle the challenges of auto-
matically constructing path-instruction pairs and exploiting
real layout knowledge from raw and unlabeled videos. To
address these, we first leverage an entropy-based method
to construct the nodes of a path trajectory. Then, we
propose an action-aware generator for generating instruc-
tions from unlabeled trajectories. Last, we devise a trajec-
tory judgment pretext task to encourage the agent to mine
the layout knowledge. Experimental results show that our
method achieves state-of-the-art performance on two popu-
lar benchmarks (R2R and REVERIE). Code is available at
https://github.com/JeremyLinky/YouTube-VLN

1. Introduction
An important goal of embodied artificial intelligence is

to develop agents that can interact with humans in natural
language to carry out real-world tasks. Toward this goal,
vision-and-language navigation (VLN) [2] is a rudimentary
artificial intelligence task, requiring an indoor agent to nav-
igate in unseen environments following natural instructions.
VLN has attracted widespread attention in the fields of com-
puter vision and robotics due to its promising applications
such as in-home robots [61] and warehouse assistants [33].

One of the key challenges of VLN is the generaliza-

*Equal contribution. Email: {imkunyanglin, phchencs}@gmail.com
†Corresponding author. Email: mingkuitan@scut.edu.cn

tion ability of agents to unseen environments. Existing
VLN methods attempt to cope with this challenge via self-
supervised pre-training on vision-and-language datasets.
As shown in Figure 1 (a), some previous works [34, 21, 42,
8] learn the agents on simulated navigation environments
and manual-labeled data. The other works [15, 14, 49] seek
to construct path-instruction pairs by using web image data,
which is shown in Figure 1 (b). Despite their promising
performance, existing agents still suffer from the follow-
ing limitations. 1) Training on simulated datasets is limited
to a restricted number of environments. 2) Constructing a
trajectory by simply concatenating web images leads to un-
reasonable room layouts, which hamper the agent to learn
layout reasoning ability. As a result, VLN agents trained on
such data are brittle to adapt to unseen environments.

Fortunately, there are massive house tour videos on
YouTube, providing real navigation experiences and layout
information but are still under-explored. We can be natu-
rally inspired to let an agent learn VLN ability from such
videos, thereby addressing the limitations of existing meth-
ods. An intuitive way is to model the navigation experi-
ences as path-instruction pairs to train the agent. Motivated
by this, we propose a “Lily” agent who Learns Vision-and-
Language Navigation from YouTube Videos. Specifically,
we first develop an in-domain pre-training dataset from
house tour YouTube videos, namely YouTube-VLN, which
comprises VLN-like path-instruction pairs. Our YouTube-
VLN dataset has the advantages of diverse environments,
real layouts, and native actions1, reducing the domain gap
with VLN datasets, as illustrated in Figure 1 (c). Then, we
pre-train the agent using these path-instruction pairs. Bene-
fiting from in-domain pre-training on our proposed dataset,
our agent thus generalizes well to unseen environments.

Constructing and utilizing such a dataset, however, is
still far from trivial work and remains an open problem due
to the following challenges. 1) As the nodes in a trajec-
tory are expected to be diverse and informative, it is hard to
determine the locations of trajectory nodes from massive
video frames and represent the visual content in a node.

1The execution actions that objectively exist

https://github.com/JeremyLinky/YouTube-VLN

研究内容1：基于房屋YouTube视频的导航预训练数据

(a) Dataset from Simulation Environments (b) Dataset from Web Images Data (c) Dataset from YouTube Videos (Ours)

• Ambiguous Actions• Confused Layouts• Restricted Number of Environments • Diverse Environments • Real Layouts • Native Actions

Figure 1: Comparison of different datasets for pre-training. Existing datasets are built from either simulation environ-
ments (a) or web images data (b). The former only covers limited environments, and the latter contains confusing layouts
and ambiguous actions. Our dataset built from YouTube videos (c) is able to provide diverse environments, real layouts and
native actions simultaneously.

2) Real VLN instructions include various action descrip-
tions, but obtaining corresponding instructions from navi-
gation clips is challenging due to the actions being implicit
in videos. Thus it is nontrivial to acquire matching instruc-
tion on a trajectory. 3) Layout knowledge from real naviga-
tion experience is hard to mine and model, which impedes
the agent of learning layout reasoning ability.

In this paper, we address the above challenges as follows.
To conquer challenge 1), we propose an entropy-based tra-
jectory generation method. Specifically, we first envisage
that the nodes of a trajectory should contain as many types
of rooms as possible to diversify trajectories. Accordingly,
we group the frames with the same room types in videos
and consider each group as a node in the trajectory. Then,
inspired by that low classification entropy image is reliable
and contains rich information relevant to a specific class
(room type in our case) [45], the frame with the lowest clas-
sification entropy in a group is chosen to represent the visual
content in a node. To tackle challenge 2), we introduce an
action-aware instruction generation method. Specifically,
we adopt an action inverse model to pseudo-label the action
along trajectories and fill them in the instructions via hand-
designed rules. To grapple with challenge 3), we devise a
self-supervised pretext task. As we all know, humans often
judge whether a navigation trajectory is reasonable based
on the layout of the environment. Therefore, it is believed
that an agent equipped with layout reasoning ability should
be able to make similar judgment. To this end, we propose
trajectory judgment pretext task to ask the agent to iden-
tify reasonable navigation trajectories, which further equips
the model with the ability to reason environment layouts.

We empirically show that the diverse entropy-based
trajectory generation method and action-aware instruction
generator allow us to harvest high-quality path-instruction
pairs from YouTube house tour videos, resulting in the
YouTube-VLN dataset. By integrating the self-supervised
trajectory judgment task in pre-training a VLN agent, our

Lily agent presents state-of-the-art performance on two ma-
ture and solid benchmarks (R2R [2], REVERIE [48]). The
proposed Lily agent reaches the first place on the R2R
leaderboard in terms of success rate and outperforms the
SOTA method under discriminative setting and generative
setting by 2% and 3% w.r.t. success rate, respectively.

Our main contributions are as follows:
• We unleash the huge potential of house tour videos

for VLN. By leveraging these videos, we introduce a large-
scale dataset containing real navigation path-instruction
pairs for promoting VLN pre-training and a self-supervised
pretext task for the learning of layout reasoning.

• Our diverse trajectory generation method, together
with the action-aware instruction generator, creates infor-
mative and diverse trajectory nodes and produces matching
instructions, both of which make the path-instruction pairs
authentic and of high quality for training a VLN agent.

• The proposed trajectory judgment pretext task allows
the model to build up an awareness of learning and reason-
ing the layout knowledge, which is crucial in the VLN task
of indoor environments. We also empirically substantiate
that the agent indeed learns the layout learning ability.

2. Related Work
2.1. Vision-and-Language Navigation

Vision-and-Language Navigation (VLN) [2] is a chal-
lenging task and has received continuous and intense atten-
tion from the academic community in recent years [5, 13,
29, 35, 53, 31, 7, 52, 10]. Early methods attempt to learn the
agent from sequence-to-sequence models [2, 11, 54]. How-
ever, these methods can not model the cross-modal relation
between language and visual observation well. To address
this issue, transformer [55] architecture is adopted to the
agents followed by vision-and-language pre-training [40,
57, 65, 43, 14, 49, 6, 44, 27]. PREVALENT [16] pre-
trains transformer-based agent via masked language mod-

eling and action prediction tasks. Inspired by BERT [9],
several works propose to use different variants of BERT
for VLN pre-training. VLN-BERT [43] utilizes image-text
data [39] to perform path-instruction matching pretext task.
Airbert [14] proposes the shuffle loss to improve the abil-
ity of the model to learn the order of image-caption pairs.
Recently, HOP [49] introduces the history and order-aware
pretext tasks. However, these existing pretext tasks do not
consider the learning of environment layout reasoning abil-
ity and bring limited performance for VLN tasks. In this
work, we propose a trajectory judgment task to teach the
agent to distinguish reasonable navigation trajectories. By
proficiently accomplishing this task, the agent can acquire
the ability to reason about environment layout, which en-
hances its generalization capability to unseen environments.

2.2. Datasets for VLN

The major difficulty of generalizing a VLN agent to un-
seen environments is the scarcity of VLN training data.
Well-labeled VLN datasets built from the simulators [3, 51,
59] allow the agent to obtain a promising performance, such
as R2R [2], R4R [22], RxR [26] and SOON [64]. While the
data built from simulators are laborious, Wang et al. [56]
and ProbES [34] enrich the navigation instructions via self-
exploration in the simulation environments. Some other en-
deavors [54, 32, 11, 12, 24, 30] seek to augment the data
from existing datasets. AutoVLN [8] and Kamath et al. [23]
enlarges the VLN data from simulations with a larger num-
ber of environments. However, these datasets are limited
by the number of scenes in simulators. To ease this prob-
lem, VLN-BERT [43] leverages the abundant web image-
captions pairs as VLN pre-training data. Airbert [14] further
exploits indoor house images and captions from the web to
construct path-instruction pairs for VLN pre-training. How-
ever, the trajectories constructed by simply splicing pictures
may be confusing and ambiguous. In our work, we address
these problems by proposing a large-scale in-domain VLN-
like pre-training dataset, providing the agent with diverse
visual environments and reasonable layouts.

3. Building VLN Dataset from YouTube Videos

Our first step is to develop a large-scale VLN-like dataset
that comprises reasonable path-instruction pairs from house
tour videos on YouTube, termed YouTube-VLN. YouTube-
VLN serves as a cornerstone for facilitating the acquisi-
tion of VLN capabilities for Lily, featuring diverse envi-
ronments, real layouts and native actions. To achieve this
goal, we present an entropy-based trajectory generation
technique (Section 3.1) and an action-aware generator (Sec-
tion 3.2) to tackle the arduous tasks of trajectory and in-
struction generation, respectively.

轨迹示意图

Current View Merged ViewMerged View

step 4

(kitchen)

step 1

(family room)

YmS7AEDSNbo

step 2

(dinning room)

step 3

(entry way)

Figure 2: An example of a generated trajectory from a
YouTube house tour video. represents the direction to
go next while represents the stop action.

3.1. Diverse Trajectory Generation.

We seek to construct discrete navigation trajectories
from YouTube videos. Similar to discrete navigation
datasets (e.g., R2R [2]), each trajectory comprises K nav-
igation nodes, representing different locations of a naviga-
tion path. This entails addressing two major challenges: 1)
how to determine the locations composing a trajectory to
make the trajectory more diverse and 2) how to represent
the visual content at each node location. To tackle these
challenges, we first collect large-scale consecutive indoor
frames from YouTube videos. Then, we group the adja-
cent frames according to their room types and consider each
group as a node. Last, we present an entropy-based tech-
nique to select the most informative frames in a group for
representing the visual content in a node.

Collecting Navigation Data from YouTube. Real es-
tate agents typically tour a house in each video. To sat-
isfy the visual diversity and dataset scale, we create the
YouTube-VLN dataset from 4078 videos collected from
various uploaders, with a total duration of 433 hours. In
contrast to prior work [4], which relied on a limited set of
videos from a single uploader, our dataset features greater
diversity and volume. We also employ sparse sampling and
off-the-shelf image classifiers [17, 50] to pre-process the
videos, filtering out redundant or noisy frames (those fea-
turing people or outdoor scenes), resulting in a final set of
587k indoor frames suitable for constructing trajectories.

Determining the Locations of Trajectory Nodes. A
real robot often needs to go through different locations for
navigating to a goal. To mimic the real navigation process,
we expect that our constructed trajectories also contain di-
verse visual content within the limited navigation nodes.
To achieve this, we first utilize the powerful large model
CLIP [50] to recognize the room type of each indoor im-

age. Then, we gather temporally adjacent frames with the
same room type as a group and consider this group as one
of the navigation nodes. In this sense, the navigation nodes
are diversely spread in different rooms and the constructed
trajectories are able to mimic the real navigation process.
We also call this kind of node a room node. In practice,
to increase the visual diversity of trajectories, we also ran-
domly insert transition nodes that are composed of video
frames captured during the transition from one room to an-
other one, between two adjacent room nodes.

Representing Visual Content in a Node. A node con-
sists of a group of images and sometimes the number of
images may exceed 100 as the photographer could stay in
the same room for a long time. Hence, we have to select the
most informative images for representing node features. In-
spired by EATA [45], an image with lower classification en-
tropy is more reliable, containing more information relevant
to a specific class (room type in our case). We thus propose
to select an image with the lowest classification entropy to
represent the current view of a node. In order to mimic the
panoramic visual context, we then merge M adjacent con-
secutive images of the current view. It is worth noting that
our node features better represent a panoramic view com-
pared with Airbert [14] because we merge adjacent frames
that belong to the same place as the current view.

Ultimately, we randomly chose K continuous nodes to
construct a trajectory. An example of the constructed tra-
jectory is shown in Figure 2.

3.2. Action-Aware Instruction Generation

In addition to constructing navigation trajectories, one
more important step for building a VLN dataset is to create
the corresponding instructions without manual annotation.
The main challenge for this step is how to correctly describe
visual content and actions along navigation paths. To con-
quer this challenge, we first generate instruction templates
with verb and noun phrase blanks. Then, we describe each
node in trajectories using the CLIP [50] model and infer the
native actions using an action inverse model [4]. To gen-
erate the final instructions, we fill the instruction templates
with these visual descriptions and actions.

Specifically, we first generate templates with verb and
noun blanks from instructions in the R2R dataset following
Airbert [14]. For noun blanks, we fill them with visual con-
tent descriptions about each node. We select the frame with
the lowest classification entropy (as described in Sec. 3.1)
and use the CLIP model to infer the objects it contains, to-
gether with the room type to populate a noun blank. For
verb blanks, the existing instruction generation method [14]
is unable to fill them with the correct action words because
it cannot figure out the actions taken for navigating from
one image to another. This makes the agent confused when
it observes similar viewpoints transition but is given differ-

ent action descriptions. To tackle this problem, we propose
an action-aware strategy to fill instruction templates with
native actions instead of random inconsistent actions. To
be specific, we follow [4] to train an action inverse model,
which has 96% prediction accuracy for predicting native ac-
tions, to pseudo-label the trajectory with action labels from
one location node to another. The predicted actions are then
converted into actionable verbs, i.e., “go forward”, “turn
left” and “turn right”. For each noun blank that has been
filled with the description of one node, we find its closest
verb phrase blank and fill it with the pseudo-labeled action
which is executed to reach the next node. This eventually
enables us to create action-aware instructions.

4. Learning VLN from YouTube Videos
Given the VLN-like and reasonable path-instruction

pairs generated from YouTube videos, we then describe
how to learn the Lily agent from these data. As shown
in Figure 3, our VLN model consists of two components:
a vision-and-language backbone (i.e., Multi-Layer Trans-
former) that models the relationship between trajectories
and instructions and a decision-making module that predicts
the next action or a matching score for a path-instruction
pair. The vision-and-language backbone can be any type
of cross-modal network. We chose ViLBERT [39] for a
fair comparison with Airbert [14]. As a common prac-
tice, pretext tasks are utilized for pre-training the backbone.
We next describe how to pre-train the backbone on our
Youtube-VLN dataset using the proposed trajectory judg-
ment pretext task.

4.1. Model Architecture
We follow Airbert [14] to leverage a ViLBERT-like [39]

architecture as the model backbone. The model encodes
the sequential visual region features and the text token via
two separate transformers respectively. More formally, the
path-instruction pair consists of K nodes {Vk}Kk=1 and L

text tokens {wl}Ll=1. Each node Vk is composed of Rk vi-
sual region features

{
vki

}Rk

i=1
. In this way, we represent the

visual and text inputs respectively as follows:

XV =
[
[IMG], v11 , . . . , v

1
R1

, . . . , [IMG], vK1 , . . . , vKRK

]
, (1)

XW = [[CLS], w1, . . . , wl, . . . , wL, [SEP]] , (2)

where [IMG], [CLS] and [SEP] are special tokens. The
encoded visual and text tokens finally interact via a cross-
modal transformer encoder. We represent the whole model
architecture as “Multi-Layer Transformer” in Figure 3.

4.2. Learning Layout from Trajectory Judgment

Given the aforementioned model architecture, we pro-
pose to train a VLN agent with a trajectory judgment (TJ)

Masked Language Modeling

… through [MASK] room…

…through family room …

研究内容2：轨迹真实性判断预训练任务

Multi-Layer Transformer

YouTube-VLN Dataset for Pre-Training

Masked Vision Modeling

Is it from a true navigation path?

Trajectory Judgement

Entryway

Family room

Kitchen

Action-Aware

Instruction

Generation

Instruction

Walk right across the

entryway, and then

go through the family

room. Turn left and

wait at kitchen.

VLN Downstream Datasets

Decision Making Module

R2R :

Generative :

Discriminative :

Entropy-Based

Trajectory

Generation
Exit the room, make a left ...

stop near the sink

REVERIE :

…

…wait at kitchen.

time

…

Trajectory

Path Ranking

…
Walk …

wait at

kitchen. 0.02

0.03

0.95

Figure 3: General scheme of our Lily agent for pre-training and downstream stages of VLN tasks. Lily agent learns to
leverage the proposed YouTube-VLN dataset for the trajectory judgment task together with the other pretext tasks. After
pre-training the VLN model, we adapt it to the downstream datasets and conduct different VLN downstream tasks.

task, enabling it to reason about layouts. Herein, we elabo-
rate on the proposed trajectory judgment task.

Formulation. The trajectory judgment task aims to
judge the reasonableness of trajectories. We consider the
trajectories generated in the way described in Section 3.1
as positive (reasonable) samples and the shuffled trajecto-
ries as negative (unreasonable) ones. To finish this task, the
agent is required to reason about the visual information and
identify the room types, then infer whether the trajectory
matches the real environment layout distribution. Specifi-
cally, we first calculate the dot product of the output fea-
tures of [IMG] and [CLS] tokens. Then, we feed this vector
feature to a linear layer to predict the probability that indi-
cates whether the trajectory is reasonable. The model aims
to minimize the binary cross-entropy loss:

L = − 1

N

N∑
n=1

[w · yn log (pn) + (1− yn) log (1− pn)] , (3)

where yn = 1 if the nth trajectory is reasonable, otherwise
yn = 0. pn represents the probability that the nth trajectory
is predicted as reasonable. N is the number of trajectories
in a batch. w is a factor to mitigate the imbalance of positive
and negative samples, which equals the ratio of the number
of negative samples to the number of positive samples.

Sample Generation. We propose to shuffle the positive
sample to generate the negative samples: 1) shuffle only the
transition nodes; 2) shuffle all the nodes; 3) keep the order
of the room nodes, and randomly insert nodes from other
videos. In this way, we create rich and hard negative sam-
ples, which increases the task difficulty, helping the agent
understand the real layout in a more complex manner.

Combining with Existing Pre-Training Tasks. As
depicted in Figure 3, we follow Airbert [14] to pre-train
the model backbone using our proposed trajectory judg-
ment task, additionally combining with three other existing

pretext tasks, namely masked language modeling (MLM),
masked vision modeling (MVM) and path ranking (PR)
on YouTube-VLN dataset. For MLM, we randomly mask
out the words in instruction and the goal is to recover
the masked words. Similar to MLM, MVM is designed
to predict masked image regions. PR is a ranking task,
which aims to decide the most matching path-instruction
pair among a few pairs.

4.3. Adapting Pre-trained Backbone for VLN

We adapt the pre-trained model to both goal-oriented
navigation task and object-oriented navigation task. All the
tasks are based on the Matterport3D simulator [3]. We uti-
lize R2R [2] as the benchmark for the goal-oriented navi-
gation task, which is divided into discriminative setting and
generative setting. As for the object-oriented task, we eval-
uate our model on REVERIE [48] in generative setting.

The discriminative setting formulates VLN as a path-
selection problem, requiring the agent to choose the path
that best matches the instruction from multiple candidate
paths. Under the discriminative setting, we utilize the clas-
sifier used in the path ranking pretext task for decision-
making and fine-tune the Lily agent on the R2R dataset.

In the generative setting, the agent needs to predict ac-
tions sequentially to reach the goal (R2R) or simultaneously
find the object (REVERIE). We adopt DUET [7] as the
architecture for fine-tuning, which feeds the cross-modal
feature into a feed-forward network for decision-making.
We initialize the text transformer encoder and cross-modal
transformer encoder of the generative model with our Lily
agent. Note that our Lily agent can apply to any generative
model. More details are available in the supplementary.

Dataset Pre-training Task Val Seen Val Unseen

Source
Reasonable

Navigation Path
Pseudo-labeled

Action
Trajectory
Judgment TL NE↓ OSR↑ SR↑ SPL↑ TL NE↓ OSR↑ SR↑ SPL↑

1 Airbnb Images % % % 10.21 3.41 79.02 74.12 0.70 9.63 3.95 70.97 62.84 0.58

2 YouTube Videos % % % 10.12 3.40 79.90 74.31 0.70 9.81 3.72 74.24 63.73 0.59
3 YouTube Videos ! % % 10.30 3.40 78.60 75.10 0.71 9.60 3.70 73.50 65.00 0.61
4 YouTube Videos ! ! % 10.20 3.30 79.80 75.40 0.71 9.30 3.60 72.70 66.10 0.62
5 YouTube Videos ! ! ! 9.99 3.12 80.88 77.45 0.74 9.64 3.37 74.93 66.70 0.62

Table 1: Ablation study on YouTube-VLN dataset and trajectory judgment pretext task for pre-training.

5. Experiments
5.1. Experimental Setup

Dataset and Evaluation Metrics. We conduct our
experiments on two VLN benchmarks, i.e., R2R [2] and
REVERIE [48]. These two datasets consist of 21,567
path-instruction pairs from 90 scenes in Matterport3D [3].
REVERIE follows the same train/val/test splits as the R2R,
while requiring an agent to select the bounding box of the
target object bounding box additionally. Following stan-
dard settings [14], we adopt five metrics for evaluating
R2R, namely success rate (SR), oracle success rate (OSR),
success rate weighted by the ratio between the length of
the shortest path and the predicted path (SPL), trajectory
length (TL) and navigation error (NE). As for REVERIE,
we leverage four metrics for evaluating navigation perfor-
mance, namely SR, OSR, SPL and TL, and two for object
grounding performance, namely remote grounding success
(RGS) and RGS weighted by path length (RGSPL).

Implementation Details. We implement our method
based on Pytorch framework [47] and Matterport3D sim-
ulator [3]. Specifically, we divide our training process into
two stages, i.e., pre-training and fine-tuning. For the pre-
training stage, we distribute training over 4 NVIDIA 3090
GPUs for 500 epochs to convergence. The pre-trained
model with the highest accuracy for the path ranking pre-
text task is selected for fine-tuning. During the fine-tuning
stage, we distribute training over 8 NVIDIA 3090 GPUs for
30 epochs to convergence. Following Airbert [14], we use
augmented data from EnvDrop [54] for fine-tuning by de-
fault. More details are provided in the supplementary.

5.2. Ablation Studies on Pre-Training

We ablate our approach under discriminative setting on
R2R benchmark. Considering the time efficiency, we do not
use augmented data for fine-tuning on these experiments.

Data Source: Airbnb Images vs. YouTube Videos.
One of the main differences between YouTube-VLN dataset
and Airbnb dataset [14] is the data source. Airbnb con-
sists of 713k image-caption pairs while YouTube-VLN con-
sists of 587k images extracted from 433 hours of house tour
videos. YouTube-VLN has fewer images but provides more
information about a room from different camera angles
by merging, which better simulates a panorama for down-

stream VLN tasks. To evaluate the effect of data source, we
follow Airbert [14] to randomly select images in the same
house to build a trajectory and its corresponding instruction.
We keep the number of instructions the same in pre-training
for a fair comparison. In Table 1 (# 1 vs. # 2), YouTube data
performs slightly better than Airbnb data, surpassing the SR
by 0.89% on the val unseen split. We speculate this is be-
cause data quality is more important than quantity.

Effectiveness of Reasonable Navigation Trajectory.
YouTube-VLN dataset is collected from real house tour
videos and is thus able to extract frames in chronological
order to build reasonable navigation trajectories instead of
combining multiple randomly chosen images. We use the
generated reasonable navigation trajectories and shuffled
trajectories to train two agents, respectively. In Table 1, the
agent trained with reasonable navigation trajectories (# 3)
achieves significantly better performance than the shuffled
navigation trajectories variant (# 2), with 1.27% gains on
SR under the val unseen split. This suggests that the agent
can not well understand and ground the instruction to the
trajectory without reasonable navigation paths for learning.

Effectiveness of Pseudo-Labeled Action. The core
of the proposed action-aware instruction generator is the
pseudo-labeled actions for the instructions. To evaluate
the effectiveness of the pseudo-labeled actions, we con-
struct a variant that replaces random action words with the
pseudo-labeled actions which are filled in the instructions.
The results are shown in Table 1, # 4. Compared to the
variant (# 3) that fills the instructions with random action
words, this variant boosts the SR metric on both the val un-
seen (+1.10%) and seen (+0.30%) splits, showing the ef-
fectiveness of pseudo-labeled actions. It indicates that with
pseudo-labeled actions, the agent can effectively ground the
action to the visual observation and recognizes the correct
transition from one location to another.

Effectiveness of Trajectory Judgment Pretext Task.
To explore the layout knowledge of the YouTube-VLN
dataset and equip the agent with layout reasoning ability, we
propose a self-supervised trajectory judgment pretext task.
In Table 1, the variant with the proposed pretext task im-
proves the performance (# 5 vs. # 4, +2.05% on val seen and
+0.60% on val unseen w.r.t. SR). Moreover, given a room
type and visual information of the current node as inputs,
this variant predicts the relative orientation of nodes for that

Methods TL NE↓ OSR↑ SR↑ SPL↑

1 Random Sample 9.37 3.52 72.88 64.41 0.61
2 Temporal Difference 9.55 3.61 73.35 65.30 0.61
3 Entropy-Based 9.64 3.37 74.93 66.70 0.62

Table 2: Comparison between different strategies of select-
ing frames to represent nodes under val unseen split.

room type with a 30% increase in accuracy (see supplemen-
tary for more details). These substantiate the claim of the
importance of the proposed trajectory judgment task, which
helps the agent learn the layout reasoning ability.

Effectiveness of Entropy-Based Trajectory Genera-
tion Strategy. In order to acquire an informative frame to
represent a node, we propose an entropy-based technique
as mentioned in Section 3.1. To demonstrate the effec-
tiveness of our strategy, we construct two variants, i.e., one
randomly chooses a frame, and one decides the frame by
temporal difference [62]. The second variant computes the
temporal pixel difference between every two consecutive
frames and picks the frames where the peaks are located as
the frames to represent the nodes. In Table 2, our entropy-
based method significantly outperforms these two variants,
increasing the SR on the val unseen split from 64.41% and
65.30% to 66.70%, respectively. We speculate this is be-
cause 1) randomly sampling frames can generate consecu-
tive redundant frames or meaningless frames (e.g., a wall
takes up most of the frame); 2) the temporal difference
method selects a frame that represents the junction of two
different rooms, which is ambiguous and thus confuses the
agent. In comparison, our entropy-based method is able to
find a reliable frame to represent a node and ensure two ad-
jacent nodes belong to different room types.

5.3. Comparison with State-of-the-Arts

Results on R2R Dataset. We first compare our Lily
agent with current methods under the discriminative setting.
In Table 3, compared with VLN-BERT that uses image-
caption pairs from the web for pre-training, our Lily agent
significantly increases the SR by 10.74% on the val unseen
split. This highlights the importance of providing the in-
domain indoor data for pre-training. Moreover, compared
with Airbert which uses in-domain image-caption pairs
from online rental marketplaces, Lily still increases the SR
from 73.85% to 79.31% on val seen and from 68.67% to
70.00% on val unseen. We attribute the improvement to
our proposed VLN-like YouTube-VLN dataset and trajec-
tory judgment pretext task, which have been thoughtfully
evaluated in Section 5.2. When ensembled with the speaker-
follower [11], all three methods increase the performance
and our Lily agent performs the best.

In Table 4, we evaluate on R2R test split and our Lily
ranks first on the VLN challenge leaderboard compared

2https://eval.ai/web/challenges/challenge-page/97/leaderboard/270

Methods Val Seen Val Unseen

TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑

Follower [11] 10.40 3.68 65.10 0.62 9.57 5.20 52.36 0.49
Speaker [11] 11.19 3.80 60.69 0.56 10.71 4.25 54.66 0.49
Speaker-Follower [11] 10.69 2.72 74.22 0.70 10.10 3.32 67.90 0.63
ProbES [34] - - - - 9.50 4.05 60.28 0.56
VLN-BERT [42] 10.28 3.73 70.20 0.66 9.60 4.10 59.26 0.55
Airbert [14] 10.59 3.21 73.85 0.69 10.03 3.24 68.67 0.63
Lily 10.21 2.89 79.31 0.76 10.03 3.19 70.00 0.65

VLN-BERT* [42] 10.61 2.35 81.86 0.78 10.00 2.76 73.61 0.68
Airbert* [14] 10.63 2.13 81.40 0.77 9.99 2.69 75.01 0.70
Lily* 10.51 2.06 83.29 0.80 9.78 2.48 76.88 0.72

Table 3: Comparison with state-of-the-arts on R2R dataset
under discriminative setting. * means results of ensembling
with the speaker-follower [11] model.

Methods TL NE↓ SPL↑ OSR↑ SR↑

Speaker-Follower [11] 1257 4.87 0.01 96 53
Self-Monitoring [40] 373 4.48 0.02 97 61
Reinforced CM [58] 358 4.03 0.02 96 63
EnvDrop [54] 687 3.26 0.01 99 69
AuxRN [65] 41 3.24 0.21 81 71
VLN-BERT [42] 686.82 2.99 0.01 99 73
Global Normalization [60] 686.86 2.99 0.01 99 74
Airbert [14] 686.54 2.58 0.01 99 77

LiLy 686.45 2.50 0.01 99 79

Table 4: Results under discriminative setting on the test un-
seen split as indicated on the R2R leaderboard 2.

with the results whose manuscripts are publicly available,
achieving the highest SR of 79%. As we follow Airbert
to use 30 candidate trajectories from EnvDrop [54] and the
leaderboard considers that our agent has walked through all
these paths, the SPL metric is low for both Lily and Airbert.

Besides, our Lily agent also helps to increase the perfor-
mance on R2R under the generative setting. We enhance the
state-of-the-art DUET [7] method by pre-training the agent
using our method as mentioned in Section 4. In Table 6,
the agent incorporating Lily achieves 2% and 3% improve-
ments w.r.t. SR on the val unseen split and test unseen split,
respectively, compared to DUET. Notably, our method in-
creases the SPL by 2% on the val unseen split, indicating the
agent is able to reach the goal more efficiently. We attribute
this to the agent’s acquisition of layout prior knowledge
via the proposed trajectory judgment task on our YouTube-
VLN dataset, enabling it to plan more efficient routes to the
goals in new environments.

Results on REVERIE Dataset. Compared with R2R,
REVERIE is more challenging as its instructions only de-
scribe the destinations without detailed path descriptions.
This requires the agent to be equipped with common knowl-
edge about the room layouts and to reason the possible paths
that lead to the destinations. In Table 5, we outperform the
SOTA agent (i.e., DUET) by 1.13% on SR and increase the
SPL from 46.98% to 48.11% on the val unseen split. It is
worth noting that our method achieves a higher OSR with
a shorter TL, indicating that our agent finds the destination

https://eval.ai/web/challenges/challenge-page/97/leaderboard/270

Methods
Val Unseen Test Unseen

Navigation Grounding Navigation Grounding

TL OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑ TL OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑

Human - - - - - - 21.18 86.83 81.53 83.66 77.84 51.44

Seq2Seq [2] 11.07 8.07 4.20 2.84 2.16 1.63 10.89 6.88 3.99 3.09 2.00 1.58
RCM [58] 11.98 14.23 9.29 6.97 4.89 3.89 10.60 11.68 7.84 6.67 3.67 3.14
SMNA [40] 9.07 11.28 8.15 6.44 4.54 3.61 9.23 8.39 5.80 4.53 3.10 2.39
FM [48] 45.28 28.20 14.40 7.19 7.84 4.67 39.05 30.63 19.88 11.61 11.28 6.08
SIA [38] 41.53 44.67 31.53 16.28 22.41 11.56 48.61 44.56 30.80 14.85 19.02 9.20
HAMT [6] 14.08 36.84 32.95 30.20 18.92 17.28 13.62 33.41 30.40 26.67 14.88 13.08
RecBERT [20] 16.78 35.02 30.67 24.90 18.77 15.27 15.86 32.91 29.61 23.99 16.50 13.51
ProbES [34] 18.00 33.23 27.63 22.75 16.84 13.94 16.84 28.23 24.97 20.12 15.11 12.32
Airbert [14] 18.71 34.51 27.89 21.88 18.23 14.18 17.91 34.20 30.28 23.61 16.83 13.28

DUET [7] 22.11 51.07 46.98 33.73 32.15 23.03 21.30 56.91 52.51 36.06 31.88 22.06
DUET (Lily) 21.87 53.71 48.11 34.43 32.15 23.43 21.94 60.51 54.32 37.34 32.02 21.94

Table 5: Comparison with state-of-the-arts on REVERIE. Lily agent achieves the state-of-the-art performance on all splits.

Methods Val Unseen Test Unseen

TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑

Seq2Seq [2] 8.39 7.81 22 - 8.13 7.85 20 -
EnvDrop [54] 10.70 5.22 52 48 11.66 5.23 51 47
AuxRN [65] - 5.28 55 50 - 5.15 55 51
PREVALENT [15] 10.19 4.71 58 53 10.51 5.30 54 51
RelGraph [19] 9.99 4.73 57 53 10.29 4.75 55 52
RecBERT [20] 12.01 3.93 63 57 12.35 4.09 63 57
ProbES [34] 11.58 4.00 61 55 12.43 4.20 62 56
ADAPT [36] 12.33 3.66 66 59 13.16 4.11 63 57
HOP [49] 12.27 3.80 64 57 12.65 3.83 64 59
HAMT [6] 11.46 2.29 66 61 12.27 3.93 65 60
Airbert [14] 11.78 4.01 62 56 12.41 4.13 62 57

DUET [7] 13.94 3.31 72 60 14.73 3.65 69 59
DUET (Lily) 14.58 2.90 74 62 16.13 3.44 72 60

Table 6: Comparison with state-of-the-arts on R2R dataset
under generative setting.

more quickly. We attribute this to the better layout reason
ability learned from the large-scale diverse reasonable tra-
jectories in the proposed YouTube-VLN dataset. A simi-
lar performance is obtained on the test unseen split, where
the Lily agent improves the SR by 1.81% and the SPL by
1.28%. Although our objective is solely navigation, we still
achieve comparable performance on grounding metrics and
even slightly outstrip DUET on most metrics.

5.4. Learning Navigation from One Environment

Our intuition is that pre-training on the YouTube-VLN
dataset can mitigate the domain gap of training from scratch
and is able to achieve excellent performance with only a
few training environments. To verify this, we conduct a
one-shot learning study, where we fine-tune our model on
only one environment of the original training environments.
Note that the candidate paths are generated from all of the
possible paths from the start viewpoints to all navigable
points, instead of from the expert model in EnvDrop [54].
All the candidate paths are the shortest paths in the naviga-
tion graphs. To reduce the bias, we randomly select 5 sets
from the entire environments and report the average results.

In Table 7, our agent outperforms all the existing pre-

Methods Val Seen Val Unseen

VLN BERT [42] 45.71 22.43
AirBERT [14] 47.88 50.00
Lily 49.31 50.86

Table 7: SR on val seen and val unseen splits of R2R. All
the agents access only one environment.

training methods. On the val seen split using one-shot fine-
tuning, compared to VLN-BERT and AirBERT, our Lily
agent achieves 3.60% and 1.43% improvements, respec-
tively. In the val unseen split using one-shot fine-tuning,
we achieve 28.43% improvement compared to VLN-BERT.
All these results suggest the effectiveness of our method.

6. Conclusion
In this work, we propose a new approach Lily to ad-

dress the limitations of existing vision-and-language navi-
gation (VLN) methods by creating a large-scale VLN-like
dataset from real house tour videos to train our embodied
agent. We overcome the challenges of automatically gen-
erating path-instruction pairs to construct the dataset from
raw and unlabeled videos by leveraging an entropy-based
method for trajectory construction and an action-aware gen-
erator for instruction generation. Additionally, we train the
agent to judge the reasonableness of trajectories, improving
its layout reasoning ability. Our method achieves state-of-
the-art performance on two popular benchmarks (R2R and
REVERIE), demonstrating the efficacy. Overall, we hope
our work can provide valuable insight into the VLN com-
munity by learning embodied VLN from passive videos.

Acknowledgement
Prof. Tan and his students were partially supported

by the National Natural Science Foundation of China
(NSFC) (62072190), National Natural Science Founda-
tion of China (NSFC) 61836003 (key project), Program
for Guangdong Introducing Innovative and Enterpreneurial
Teams 2017ZT07X183.

References
[1] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson,

S. Gould, and L. Zhang. Bottom-up and top-down atten-
tion for image captioning and visual question answering. In
CVPR, pages 6077–6086, 2018. 12, 17

[2] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson,
N. Sünderhauf, I. D. Reid, S. Gould, and A. van den Hen-
gel. Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments. In
CVPR, pages 3674–3683, 2018. 1, 2, 3, 5, 6, 8, 15, 17

[3] A. X. Chang, A. Dai, T. A. Funkhouser, M. Halber,
M. Nießner, M. Savva, S. Song, A. Zeng, and Y. Zhang.
Matterport3d: Learning from RGB-D data in indoor envi-
ronments. In 3DV, pages 667–676, 2017. 3, 5, 6

[4] M. Chang, A. Gupta, and S. Gupta. Semantic visual naviga-
tion by watching youtube videos. In NeurIPS, pages 4283–
4294, 2020. 3, 4, 15

[5] P. Chen, D. Ji, K. Lin, R. Zeng, T. H. Li, M. Tan, and
C. Gan. Weakly-supervised multi-granularity map learning
for vision-and-language navigation. In NeurIPS, 2022. 2

[6] S. Chen, P. Guhur, C. Schmid, and I. Laptev. History aware
multimodal transformer for vision-and-language navigation.
In NeurIPS, pages 5834–5847, 2021. 2, 8

[7] S. Chen, P. Guhur, M. Tapaswi, C. Schmid, and I. Laptev.
Think global, act local: Dual-scale graph transformer for
vision-and-language navigation. In CVPR, pages 16516–
16526, 2022. 2, 5, 7, 8, 16, 17, 18

[8] S. Chen, P.-L. Guhur, M. Tapaswi, C. Schmid, and I. Laptev.
Learning from unlabeled 3d environments for vision-and-
language navigation. In ECCV, 2022. 1, 3

[9] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-
training of deep bidirectional transformers for language un-
derstanding. In NAACL, pages 4171–4186, 2019. 3

[10] M. Ding, Y. Xu, Z. Chen, D. D. Cox, P. Luo, J. B. Tenen-
baum, and C. Gan. Embodied concept learner: Self-
supervised learning of concepts and mapping through in-
struction following. In CoRL, 2022. 2

[11] D. Fried, R. Hu, V. Cirik, A. Rohrbach, J. Andreas,
L. Morency, T. Berg-Kirkpatrick, K. Saenko, D. Klein, and
T. Darrell. Speaker-follower models for vision-and-language
navigation. In NeurIPS, pages 3318–3329, 2018. 2, 3, 7

[12] T. Fu, X. E. Wang, M. F. Peterson, S. T. Grafton, M. P. Eck-
stein, and W. Y. Wang. Counterfactual vision-and-language
navigation via adversarial path sampler. In ECCV, pages 71–
86, 2020. 3

[13] C. Gao, J. Chen, S. Liu, L. Wang, Q. Zhang, and Q. Wu.
Room-and-object aware knowledge reasoning for remote
embodied referring expression. In CVPR, pages 3064–3073,
2021. 2

[14] P. Guhur, M. Tapaswi, S. Chen, I. Laptev, and C. Schmid.
Airbert: In-domain pretraining for vision-and-language nav-
igation. In ICCV, pages 1614–1623, 2021. 1, 2, 3, 4, 5, 6, 7,
8, 16

[15] W. Hao, C. Li, X. Li, L. Carin, and J. Gao. Towards learning
a generic agent for vision-and-language navigation via pre-
training. In CVPR, pages 13134–13143, 2020. 1, 8

[16] W. Hao, C. Li, X. Li, L. Carin, and J. Gao. Towards learning
a generic agent for vision-and-language navigation via pre-
training. In CVPR, pages 13134–13143, 2020. 2

[17] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask
R-CNN. In ICCV, pages 2980–2988, 2017. 3, 12

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, pages 770–778, 2016. 12

[19] Y. Hong, C. R. Opazo, Y. Qi, Q. Wu, and S. Gould. Language
and visual entity relationship graph for agent navigation. In
NeurIPS, pages 7685–7696, 2020. 8

[20] Y. Hong, Q. Wu, Y. Qi, C. R. Opazo, and S. Gould. VLN
BERT: A recurrent vision-and-language BERT for naviga-
tion. In CVPR, pages 1643–1653, 2021. 8

[21] H. Huang, V. Jain, H. Mehta, A. Ku, G. Magalhães,
J. Baldridge, and E. Ie. Transferable representation learning
in vision-and-language navigation. In ICCV, pages 7403–
7412, 2019. 1

[22] V. Jain, G. Magalhães, A. Ku, A. Vaswani, E. Ie, and
J. Baldridge. Stay on the path: Instruction fidelity in vision-
and-language navigation. In ACL, pages 1862–1872, 2019.
3, 18

[23] A. Kamath, P. Anderson, S. Wang, J. Y. Koh, A. Ku, A. Wa-
ters, Y. Yang, J. Baldridge, and Z. Parekh. A new path: Scal-
ing vision-and-language navigation with synthetic instruc-
tions and imitation learning. CoRR, abs/2210.03112, 2022.
3

[24] J. Y. Koh, H. Lee, Y. Yang, J. Baldridge, and P. Anderson.
Pathdreamer: A world model for indoor navigation. In ICCV,
pages 14718–14728, 2021. 3

[25] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz,
S. Chen, Y. Kalantidis, L. Li, D. A. Shamma, M. S. Bern-
stein, and L. Fei-Fei. Visual genome: Connecting language
and vision using crowdsourced dense image annotations.
IJCV, 123:32–73, 2017. 12

[26] A. Ku, P. Anderson, R. Patel, E. Ie, and J. Baldridge. Room-
across-room: Multilingual vision-and-language navigation
with dense spatiotemporal grounding. In EMNLP, pages
4392–4412, 2020. 3, 18

[27] C. Kuo, C. Ma, J. Hoffman, and Z. Kira. Structure-encoding
auxiliary tasks for improved visual representation in vision-
and-language navigation. In WACV, pages 1104–1113, 2023.
2

[28] J. Li, D. Li, C. Xiong, and S. C. H. Hoi. BLIP: bootstrapping
language-image pre-training for unified vision-language un-
derstanding and generation. In ICML, pages 12888–12900.
18

[29] J. Li, H. Tan, and M. Bansal. Improving cross-modal align-
ment in vision language navigation via syntactic information.
In NAACL, pages 1041–1050, 2021. 2

[30] J. Li, H. Tan, and M. Bansal. Improving cross-modal align-
ment in vision language navigation via syntactic information.
In K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-
Tür, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and
Y. Zhou, editors, NAACL-HLT, pages 1041–1050, 2021. 3

[31] J. Li, H. Tan, and M. Bansal. CLEAR: improving
vision-language navigation with cross-lingual, environment-
agnostic representations. In NAACL, pages 633–649, 2022.
2

[32] J. Li, H. Tan, and M. Bansal. Envedit: Environment editing
for vision-and-language navigation. In CVPR, pages 15386–
15396, 2022. 3

[33] C. Liang, K. Chee, Y. Zou, H. Zhu, A. Causo, S. Vidas,
T. Teng, I. Chen, K. Low, and C. Cheah. Automated robot
picking system for e-commerce fulfillment warehouse appli-
cation. In IFToMM, 2015. 1

[34] X. Liang, F. Zhu, L. Li, H. Xu, and X. Liang. Visual-
language navigation pretraining via prompt-based environ-
mental self-exploration. In ACL, pages 4837–4851, 2022. 1,
3, 7, 8, 15

[35] X. Liang, F. Zhu, Y. Zhu, B. Lin, B. Wang, and
X. Liang. Contrastive instruction-trajectory learning for
vision-language navigation. In AAAI, pages 1592–1600,
2022. 2

[36] B. Lin, Y. Zhu, Z. Chen, X. Liang, J. Liu, and X. Liang.
ADAPT: vision-language navigation with modality-aligned
action prompts. In CVPR, pages 15375–15385, 2022. 8

[37] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: com-
mon objects in context. In ECCV, pages 740–755, 2014. 12

[38] X. Lin, G. Li, and Y. Yu. Scene-intuitive agent for remote
embodied visual grounding. In CVPR, pages 7036–7045,
2021. 8

[39] J. Lu, D. Batra, D. Parikh, and S. Lee. Vilbert: Pretraining
task-agnostic visiolinguistic representations for vision-and-
language tasks. In NeurIPS, pages 13–23, 2019. 3, 4

[40] C. Ma, J. Lu, Z. Wu, G. AlRegib, Z. Kira, R. Socher, and
C. Xiong. Self-monitoring navigation agent via auxiliary
progress estimation. In ICLR, 2019. 2, 7, 8

[41] S. Ma, Y. Wang, Y. Wei, J. Fan, T. H. Li, H. Liu, and F. Lv.
Cat: Localization and identification cascade detection trans-
former for open-world object detection. In CVPR, pages
19681–19690, 2023. 18

[42] A. Majumdar, A. Shrivastava, S. Lee, P. Anderson, D. Parikh,
and D. Batra. Improving vision-and-language navigation
with image-text pairs from the web. In ECCV, pages 259–
274, 2020. 1, 7, 8

[43] A. Majumdar, A. Shrivastava, S. Lee, P. Anderson, D. Parikh,
and D. Batra. Improving vision-and-language navigation
with image-text pairs from the web. In ECCV, pages 259–
274, 2020. 2, 3

[44] A. Moudgil, A. Majumdar, H. Agrawal, S. Lee, and D. Ba-
tra. SOAT: A scene- and object-aware transformer for vision-
and-language navigation. In NeurIPS, pages 7357–7367,
2021. 2

[45] S. Niu, J. Wu, Y. Zhang, Y. Chen, S. Zheng, P. Zhao, and
M. Tan. Efficient test-time model adaptation without forget-
ting. In ICML, pages 16888–16905, 2022. 2, 4

[46] OpenAI. GPT-4 technical report. 2023. 18

[47] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Köpf, E. Z. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance
deep learning library. In NeurIPS, pages 8024–8035, 2019.
6

[48] Y. Qi, Q. Wu, P. Anderson, X. Wang, W. Y. Wang, C. Shen,
and A. van den Hengel. REVERIE: remote embodied visual
referring expression in real indoor environments. In CVPR,
pages 9979–9988, 2020. 2, 5, 6, 8

[49] Y. Qiao, Y. Qi, Y. Hong, Z. Yu, P. Wang, and Q. Wu.
Hop: History-and-order aware pre-training for vision-and-
language navigation. In CVPR, pages 15418–15427, 2022.
1, 2, 3, 8

[50] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,
G. Krueger, and I. Sutskever. Learning transferable visual
models from natural language supervision. In ICML, pages
8748–8763, 2021. 3, 4, 15, 17

[51] S. K. Ramakrishnan, A. Gokaslan, E. Wijmans,
O. Maksymets, A. Clegg, J. Turner, E. Undersander,
W. Galuba, A. Westbury, A. X. Chang, M. Savva, Y. Zhao,
and D. Batra. Habitat-matterport 3d dataset (HM3D): 1000
large-scale 3d environments for embodied AI. In NeurIPS
Datasets and Benchmarks, 2021. 3

[52] R. Schumann and S. Riezler. Analyzing generalization of
vision and language navigation to unseen outdoor areas. In
S. Muresan, P. Nakov, and A. Villavicencio, editors, ACL,
pages 7519–7532, 2022. 2

[53] C. H. Song, J. Kil, T. Pan, B. M. Sadler, W. Chao, and Y. Su.
One step at a time: Long-horizon vision-and-language navi-
gation with milestones. In CVPR, pages 15461–15470, 2022.
2

[54] H. Tan, L. Yu, and M. Bansal. Learning to navigate unseen
environments: Back translation with environmental dropout.
In J. Burstein, C. Doran, and T. Solorio, editors, NAACL,
pages 2610–2621, 2019. 2, 3, 6, 7, 8

[55] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all
you need. In NeurIPS, pages 5998–6008, 2017. 2

[56] S. Wang, C. Montgomery, J. Orbay, V. Birodkar, A. Faust,
I. Gur, N. Jaques, A. Waters, J. Baldridge, and P. Anderson.
Less is more: Generating grounded navigation instructions
from landmarks. In CVPR, pages 15407–15417, 2022. 3

[57] X. Wang, Q. Huang, A. Celikyilmaz, J. Gao, D. Shen,
Y. Wang, W. Y. Wang, and L. Zhang. Reinforced cross-modal
matching and self-supervised imitation learning for vision-
language navigation. In CVPR, pages 6629–6638, 2019. 2

[58] X. Wang, Q. Huang, A. Celikyilmaz, J. Gao, D. Shen,
Y. Wang, W. Y. Wang, and L. Zhang. Reinforced cross-modal
matching and self-supervised imitation learning for vision-
language navigation. In CVPR, pages 6629–6638, 2019. 7,
8

[59] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese.
Gibson env: Real-world perception for embodied agents. In
CVPR, pages 9068–9079, 2018. 3

[60] L. Xie, M. Zhang, Y. Li, W. Qin, Y. Yan, and E. Yin. Vision–
language navigation with beam-constrained global normal-
ization. TNNLS, 2022. 7

[61] G. A. Zachiotis, G. Andrikopoulos, R. Gornez, K. Naka-
mura, and G. Nikolakopoulos. A survey on the application
trends of home service robotics. In ROBIO, pages 1999–
2006, 2018. 1

[62] Y. Zheng and L. Fan. Moving object detection based on run-
ning average background and temporal difference. In ISKE,
pages 270–272, 2010. 7

[63] B. Zhou, À. Lapedriza, A. Khosla, A. Oliva, and A. Torralba.
Places: A 10 million image database for scene recognition.
TIPAMI, 40:1452–1464, 2018. 12

[64] F. Zhu, X. Liang, Y. Zhu, Q. Yu, X. Chang, and X. Liang.
SOON: scenario oriented object navigation with graph-based
exploration. In CVPR, pages 12689–12699, 2021. 3, 18

[65] F. Zhu, Y. Zhu, X. Chang, and X. Liang. Vision-language
navigation with self-supervised auxiliary reasoning tasks. In
CVPR, pages 10009–10019, 2020. 2, 7, 8

APPENDIX

In the supplementary, we provide more details of our method. We organize the supplementary as follows.

• In Section A, we present more details on video collection.

• In Section B, we present more details on frame filtering.

• In Section C, we present more details on trajectory generation.

• In Section D, we present more details on instruction generation.

• In Section E, we present statistics and visualization examples of our YouTube-VLN dataset.

• In Section F, we provide more implementation details of experiments.

• In Section G, we provide more details of the effectiveness of trajectory judgment task on layout reasoning ability.

• In Section H, we provide the transferability results of our method.

• In Section I, we present qualitative results of our method.

• In Section J, we discuss potential future research and social impact.

A. More Details on YouTube Video Collection
We collect real estate tour videos from YouTube3. Specifically, we restrict the videos to real estate tour videos. It is

unrealistic to play all categories of videos one by one to check whether they meet our requirements. On the contrary, we
look for several well-known YouTubers whose playlists have been well-categorized for house tour videos, and each list has a
consistent style. To find such YouTubers, we only spend less than an hour of mannual search time. In YouTube, each video
has its corresponding video id (e.g., C99Y jG JBsg4), we obtain all the house tour videos according to the video ids and
regard the video ids as house ids.

B. More Details on Frame Filtering
Before generating a navigation trajectory, we first pre-process these videos by sparse sampling and using off-the-shelf

image classifiers [17, 18] to filter out redundant frames and noisy frames (i.e., frames with persons or outdoor scenes). A
video can be sampled at up to 60 frames per second. Generally, there is almost no obvious change between screens within 2s
intervals in a video. Therefore, we sparsely sample the videos with 0.5 frames per second. Considering that in the downstream
indoor VLN task, persons and outdoor images are not allowed to occur in the observations, we discard such noisy frames
in the house tour videos. Specifically, we employ a Resnet [18] model pre-trained on Place 365 [63] and Mask RCNN [17]
model pre-trained on COCO [37] to detect the outdoor images (as shown in Figure 4a) and images with persons (as shown in
Figure 4b), respectively. In addition, some images are filtered since they do not contain any objects and can not be extracted
to region features (as shown in Figure 4c).

C. More Details on Trajectory Generation
To mimic the sequential navigation path in R2R, we typically choose K ∈ [4, 7] as the length of a trajectory. As mentioned

in Section 3.1, a trajectory consists of room nodes and transition nodes. We randomly sample R ∈ [2, 7] room nodes in
temporal order for a trajectory. Considering that 1) navigation is a continuous problem in both temporal dimension and
spatial dimension, and 2) instruction does not necessarily describe all observations on a trajectory, the remaining (K − R)
nodes are filled with transition nodes. Each image is encoded into region features by Faster R-CNN bottom-up top-down
attention [1] model pre-trained on Visual Genome [25]. In order to approximate the panoramic visual context, we merge the
region features from similar room types per image. The images we merged are from consecutive frames and in the same
group, usually taken by the real estate agent around similar locations in order to better introduce the room.

3https://www.youtube.com
4https://www.youtube.com/watch?v=C99YjG_JBsg

https://www.youtube.com
https://www.youtube.com/watch?v=C99YjG_JBsg

(a) Frames with outdoor scenes.

(b) Frames with persons.

(c) Frames without region features.

Figure 4: Examples of filtered frames, including those with outdoor scenes (a), persons (b) or no region features (c).

25 75 125 175 225 275 325 375 425 475 525+
Number of Frames

0

200

400

600

800

1000

N
um

be
r

of
 V

id
eo

s

882

725

924

516

368
302

169
95

51 23 23

(a) Distribution of the number of frames per video.

forward left right
Action

0

20000

40000

60000

80000

100000

N
um

be
r

of
 F

ra
m

es

52255

72276

113306

(b) Distribution of actions.

family room bedroom bathroom hallway kitchen entry way dining room stairs living room office lounge porch
Category

0

20000

40000

60000

80000

100000

120000

N
um

be
r

of
 F

ra
m

es

122277

106945

93455

74418
69430

43673

27738
21935

8321 8076 7141 4781

(c) Distribution of predicted scene categories on YouTube frames.

Figure 5: Statistics of YouTube-VLN Dataset.

Head toward kitchen with counter and turn right. Stop in lounge.

Generated Instruction

⁕ Kitchen with Counter

Kitchen with Appliances

⁕ Lounge with Furniture

Lounge with Blinds

Kitchen with Blinds

T
u

rn
 R

ig
h

t

Figure 6: Examples of path-instruction pairs in the proposed YouTube-VLN dataset. The generated trajectory contains 2
room nodes (marked as *) and 3 transition nodes. The translucent images are the merged images.

⁕ Hallway with Door

⁕ Bedroom with Bed

⁕ Bathroom with Bathtub

Bathroom with Bathtub

⁕ Entryway with Door

G
o

 F
o

rw
a
rd

T
u

rn
 R

ig
h

t
T
u

rn
 L

e
ft

Walk forward to door. Once you are at bedroom, walk right until you reach entry way. Go left bathroom, then stop.
Generated Instruction

Figure 7: Examples of path-instruction pairs in the proposed YouTube-VLN dataset. The generated trajectory contains 4
room nodes (marked as *) and 1 transition nodes. The translucent images are the merged images.

D. More Details on Instruction Generation

As for instruction generation, we first harvest 14,031 fill-in-the-blank templates from the R2R training set. Specifically,
we extract the noun phrases and verb phrases for each human-annotated navigation instruction in the R2R training set. We
then randomly select a template that has R noun phrase blanks and (R − 1) verb phrase blanks for a trajectory with R room

⁕ bedroom with bed

bedroom with bed

⁕ bathroom with mirror

bathroom with bathtub

bedroom with bed

⁕ hallway with door

T
u

rn
 R

ig
h

t
T
u

rn
 L

e
ft

Go right bedroom to bathroom with mirror and turn left. Wait at door.
Generated Instruction

Figure 8: Examples of path-instruction pairs in the proposed YouTube-VLN dataset. The generated trajectory contains 3
room nodes (marked as *) and 3 transition nodes. The translucent images are the merged images.

nodes. We use CLIP [50] model to caption the room nodes with a template “[room] with [object]” following [34], where
the “[room]” and “[object]” represent the room category and object category of a room node, respectively. To better include
the details of the rooms, we fill a noun blank with “[room] with [object]” or “[room]” or “[object]”. A CNN inverse action
model [4] infers the transition action from one room node to another. Finally, we obtain R captions and (R−1) action words
for a template. The captions are used to fill the noun phrase blanks in the template sequentially. For each noun phrase blank
filled with the captions of one room node, we find its closest verb phrase blank and fill it with the action which is executed
to reach the next room node. Our instruction generation strategy fills the verb phrase blanks with pseudo-labeled actions,
providing a natural transition between two nodes to the created instruction.

E. Statistics and Visualizations of YouTube-VLN Dataset

In Figure 5, we show some key statistics about our YouTube-VLN dataset. We construct the YouTube-VLN from the
collected 4078 videos. After filtering the noisy frames, we harvest 568K images in total. In Figure 5a, we present the number
of frames per video via a histogram. It shows that most of the videos contain more than 25 effective frames, indicating
that each video can provide sufficient image samples for an agent to learn and reason about this house. Figure 5c presents
the predicted room types of the frames. We used CLIP [50] to categorize each frame into one of the 12 labeled room
types in Matterport dataset [2]. It can be observed that most of the images in the proposed YouTube-VLN dataset cover
the core part of a house (e.g., family room and bedroom). This enables the agent to learn the layout prior knowledge more
efficiently. Moreover, these labels are further used for instruction generation and image merging. In addition, we also show
the distribution of the pseudo-labeled actions in Figure 5b. Each action is the predicted native action from one room node to
another, representing the direction that the agent should follow. As shown in the histogram, the pseudo-labeled actions are
evenly distributed into three types of actions, endowing the agent to understand the actions efficiently. We also show some
visualization examples of the generated path-instruction pairs in YouTube-VLN as in Figure 6, Figure 7, and Figure 8.

Embed-Vis

Embed-Lang Self-Att-Lang

Cross-Att-Vis

Cross-Att-Lan

Self-Att-Vis

Self-Att-Lang

(a) Adapt Lily agent to the discriminative setting.

(b) Adapt Lily agent to the generative setting.

Word Tokens

× L1 Layers

× L2 Layers

Action Predictions

Ranking Sores

× L1 Layers

𝐼𝑀𝐺 , 𝑣1
1, … , 𝑣𝑅𝐾

𝐾

𝐶𝐿𝑆 , 𝑤1, … , 𝑤𝐿 , 𝑆𝐸𝑃

Node Features × L2 Layers

Embed-Node Cross-Att-Vis Self-Att-Graph𝑛1, … , 𝑛𝑃

Embed-Lang Self-Att-Lang FFN𝐶𝐿𝑆 , 𝑤1, … , 𝑤𝐿 , 𝑆𝐸𝑃

Visual Features

× L2 Layers

Embed-Vis Cross-Att-Vis Self-Att-Vis𝑟1, … , 𝑜𝑚

Trajectory Features

Word Tokens

(a) Adapting Lily agent to the discriminative setting (same as Airbert [14]).

Embed-Vis

Embed-Lang Self-Att-Lang

Cross-Att-Vis

Cross-Att-Lan

Self-Att-Vis

Self-Att-Lang

(a) Adapt Lily agent to the discriminative setting.

(b) Adapt Lily agent to the generative setting.

Word Tokens

× L1 Layers

× L2 Layers

Action Predictions

Ranking Sores

× L1 Layers

𝐼𝑀𝐺 , 𝑣1
1, … , 𝑣𝑅𝐾

𝐾

𝐶𝐿𝑆 , 𝑤1, … , 𝑤𝐿 , 𝑆𝐸𝑃

Node Features × L2 Layers

Embed-Node Cross-Att-Vis Self-Att-Graph𝑛1, … , 𝑛𝑃

Embed-Lang Self-Att-Lang FFN𝐶𝐿𝑆 , 𝑤1, … , 𝑤𝐿 , 𝑆𝐸𝑃

Visual Features

× L2 Layers

Embed-Vis Cross-Att-Vis Self-Att-Vis𝑟1, … , 𝑜𝑚

Trajectory Features

Word Tokens

(b) Adapting Lily agent to the generative setting (same as DUET [7]).

Figure 9: The adapted model in both discriminative and generative settings for downstream VLN tasks.

F. More Implementation Details
The model architecture details are shown in Figure 9. The meanings of each layer are as follows:

• Embed-Lang: language token embeddings, which consist of word embeddings, position embeddings, and token type
embeddings.

• Embed-Vis: vision token embeddings, which consist of visual feature embeddings and position embeddings of the
current node.

• Embed-Node: node embeddings, which consist of visual feature embeddings, position embeddings, and navigation step
embeddings of all nodes in the navigation graph.

• Self-Att-Lang: self-attention layers for language input.

• Self-Att-Vis: self-attention layers for vision input.

• Cross-Att-Vis: cross-modal attention layers for vision branch.

• Cross-Att-Lang: cross-modal attention layers for language branch.

• FFN: feed-forward network, which consists of two linear layers.

F.1. Pre-training Details

As described in Section 4.1, we adopt a ViLBERT-like architecture as the same as Airbert [14]. The model architecture of
pre-training is shown in Figure 9a. For a fair comparison, we set both L1 and L2 to 6, consistent with Airbert in the discrim-
inative setting. For generative adaption, the number of layers L1 is equal to 9 and L2 is equal to 5 for a fair comparison with
DUET [7]. For both settings, we distribute training over 4 NVIDIA 3090 GPUs (24GB each) for 500 epochs to convergence.
The batch size is 8 (2 for each GPU) and the learning rate is 2 × 10−5. We randomly selected 95% videos per epoch as the
training set and 5% videos as the test set.

0 50 100 150 200 250 300 350 400 450 500
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
ra

in
in

g
lo

ss

TJ
w/o TJ

0 50 100 150 200 250 300 350 400 450 500
Epoch

0
5

10
15
20
25
30
35
40
45

T
es

t A
cc

ur
ac

y
(%

)

TJ
w/o TJ

Figure 10: Evolution of training cross-entropy (CE) loss and test accuracy w.r.t. training epochs on R2R dataset.

F.2. Fine-tuning Details

Discriminative Setting. In our experiments, discriminative evaluation is conducted on R2R dataset. In this setting, VLN is
formulated as a path selection problem. As shown in Figure 9a, the model architecture is the same as the pre-trained model
whose classifier used in the path ranking pretext task can be directly for path selection. We follow a two-stage fine-tuning as
Airbert, which fine-tunes the agent with MLM task and MVM task in stage one and PR task in stage two. In stage one, the
batch size is 12 on 4 VIDIA 3090 GPUs (24GB each) and the learning rate is 4× 10−5. In stage two, we set the batch size as
16 on 8 NVIDIA 3090 GPUs (24GB each) and the learning rate as 1 × 10−5. The agent is fine-tuned for 30 epochs in both
stages. The visual features are also encoded by a bottom-up top-down attention [1] model. We select the model checkpoint
with the highest success rate on the val unseen validation split for the test set evaluation and leaderboard submission.

Generative Setting. In the generative setting, the agent needs to predict actions sequentially in order to reach the goal
(R2R) or find the object (REVERIE). We adopt DUET [7] as the architecture for fine-tuning as it is the state-of-the-art
model. As illustrated in Figure 9b, DUET is a three-stream architecture which is fed with P node features {ni}Pi=1, word
tokens {[CLS], {wi}Li=1 , [SEP]} and the current panorama encoding with image features {ri}ni=1 together with object fea-
tures {oi}mi=1. The BERT-like architecture is used to determine which node should the agent go to or what the object goal id
is. We initialize the language stream and the cross-modal streams using the corresponding modules in our pre-trained model,
highlighted as the orange dotted line in Figure 9b. The other settings remain the same as DUET for a fair comparison.

G. Effectiveness of Trajectory Judgment Task on Layout Reasoning Ability
To evaluate the effectiveness of the proposed trajectory judgment task, we conduct an experiment to evaluate whether the

agent trained with this task is able to figure out the direction of an unexplored room based on current observation. Since the
common room layout knowledge is required for figuring out this question, the accuracy of this question reveals the layout
reasoning ability of the agent.

We conduct this experiment on the R2R [2] dataset, which provides a navigation graph for each environment. Specifically,
we randomly initialize an agent on a navigation node. Then, we sample another node from the candidate node list of the
current node and use the CLIP [50] model to identify the room type of this node. Given this room type and the panorama visual
feature of the current node as text input and visual input, respectively, the agent is asked to predict the relative orientation of
the node for that room type. We define the angle between the matching node of the room type and the current orientation as
s ∈ [−180◦, 180◦]. We then divide [−180◦, 180◦] uniformly into twelve intervals and compute the interval that s belongs to.
This task thus becomes a twelve-category problem and is optimized by minimizing the cross-entropy loss:

LCE = −
12∑
i=1

yi ln ŷi (4)

where ŷi = e−xi∑12
k=1 e−xk

represents the predicted probability of s belonging to ith interval, xi represents ith output logit of the

model and yi ∈ {0, 1} indicates whether s belongs to ith interval. We train two agents for 500 epochs, one with the proposed
trajectory judgment task and one without it.

As shown in Figure 10, the training cross-entropy loss almost does not decrease without being pre-trained with the tra-
jectory judgment task. This indicates that this variant has not learned the layout reasoning ability at all. Pre-trained with the
trajectory judgment task, the agent model drops the training cross-entropy loss rapidly and the test accuracy increases stably.
Finally, the highest accuracy of the variant pre-trained with the trajectory judgment task reaches around 40%, while the other
variant is 10% (nearly equal to 1

12). These results verify that the trajectory judgment task facilitates learning layout reasoning
ability, achieving substantial improvement.

H. Transferability Results to Other VLN Benchmarks
To better confirm the effectiveness of the our method, we evaluate the transferability of Lily on the other three VLN

benchmarks, i.e., RxR [26], R4R [22] and SOON [64]. Specifically, we transfer the model trained on R2R to RxR and R4R
and the model trained on REVERIE to SOON without fine-tuning. In Table 8, most of the results share the same trend as
the results on the R2R and REVERIE dataset, i.e., consistently surpassing the SOTA with large margins on val unseen split.
These results demonstrate that our method can generalize well to different domains with varying complexity.

Methods RxR R4R SOON

SR SPL SR SPL SR SPL

DUET [7] 23.05 18.05 16.01 13.20 2.83 2.09
Lily (ours) 27.20 20.51 20.76 17.34 5.72 4.10

Table 8: Transfer results on RxR, R4R and SOON under val unseen split.

I. Qualitative Results
We also present some visualization examples of our Lily agent and the state-of-the-art agent Airbert on the R2R dataset.

As shown in Figure 11, given the instruction that asks the agent to go to a dining room, our Lily agent is able to arrive at
the office more quickly than Airbert. We speculate that our Lily agent can be aware of the layout knowledge that an office is
usually located in a room on either side of a hallway. Hence, our Lily agent goes straight to the hallway (the red arrow in step
4), while Airbert goes to an entryway connecting the door to the outside(the red arrow in step 4). Our method also improves
the understanding of the actions in an instruction. In Figure 12, our Lily agent can easily understand the instruction which
asks it to turn left (the red arrow in step 4). However, when pre-trained with incorrect actions, Airbert feels confused about
the action words and does not execute the “Turn left” in the instruction, and keeps going forward (the red arrow in step 4),
eventually not finding the kitchen.

J. Potential Future Research and Social Impact
Our method is still restricted to graph-based environments. In a real-world application, we may expect the agent actuates

the action continuously. This requires us to build more continuous navigation trajectories for the pre-training dataset. Besides,
with more powerful vision and language foundation models [28, 46, 41], the models used to construct the proposed dataset
can be further improved as more precise and open-world. We can also increase the data diversity by adding richer video and
instruction templates.

In the future, agents can be able to actively learn some helpful skills by watching videos like us humans and then assist
people with their jobs (e.g., delivering and cleaning), thereby reducing high training costs. However, data security can be an
important issue. For some videos that humans keep secret or do not want agents to see, countermeasures should be taken to
prevent agents from accessing such videos, otherwise, it may affect human survival one day.

Step 1

Step 2

Step 3

Step 5

Lily Airbert

Walk out of the living room into the hallway. Take the first right, and walk straight. Stop on the rug in the office and stand in

front of the bookshelf.

Instruction

Step 4

Step 1

Step 2

Step 3

Step 5

Step 4

Step 6

Figure 11: Visualisation of a trajectory where we compare the performance of our Lily agent with Airbert. The centre of
each panorama is the heading direction of the agent at the corresponding time step. Red arrows indicate the predicted actions
in each time step. Our Lily agent successfully leverages the layout prior knowledge to find the office.

Step 1

Step 2

Step 3

Step 5

Lily Airbert

Go past the circle of chairs toward the door. Turn right and

go into the hallway. Turn left to go into the kitchen.

Instruction

Step 4

Step 1

Step 2

Step 3

Step 5

Step 4

Step 6

Step 7

Figure 12: Visualisation of a trajectory where we compare the performance of our Lily agent with Airbert. The centre of
each panorama is the heading direction of the agent at the corresponding time step. Red arrows indicate the predicted actions
in each time step. Our Lily agent correctly understands the action in the instruction and executes it.

