
Self-supervised Moving Vehicle Tracking with Stereo Sound

Chuang Gan2,3, Hang Zhao1, Peihao Chen3, David Cox2,3, Antonio Torralba1

1 MIT CSAIL, 2 MIT-IBM Watson AI Lab, 3 IBM Research AI

Abstract

Humans are able to localize objects in the environment

using both visual and auditory cues, integrating information

from multiple modalities into a common reference frame.

We introduce a system that can leverage unlabeled audiovi-

sual data to learn to localize objects (moving vehicles) in a

visual reference frame, purely using stereo sound at infer-

ence time. Since it is labor-intensive to manually annotate

the correspondences between audio and object bounding

boxes, we achieve this goal by using the co-occurrence of vi-

sual and audio streams in unlabeled videos as a form of self-

supervision, without resorting to the collection of ground

truth annotations. In particular, we propose a framework

that consists of a vision “teacher” network and a stereo-

sound “student” network. During training, knowledge em-

bodied in a well-established visual vehicle detection model

is transferred to the audio domain using unlabeled videos

as a bridge. At test time, the stereo-sound student network

can work independently to perform object localization us-

ing just stereo audio and camera meta-data, without any

visual input. Experimental results on a newly collected Au-

ditory Vehicle Tracking dataset verify that our proposed ap-

proach outperforms several baseline approaches. We also

demonstrate that our cross-modal auditory localization ap-

proach can assist in the visual localization of moving vehi-

cles under poor lighting conditions.

1. Introduction

Sound conveys a wealth of information about the phys-

ical world around us, and humans are remarkably good at

interpreting sounds produced by nearby objects. We can of-

ten identify what an object is based on the sounds it makes

(e.g. a dog barking), and we can estimate properties of ma-

terials (e.g. if they are hard or soft) based on the sounds they

make when they interact with other objects.

In addition, our perception of sound allows us to localize

objects that are not in our line of sight (e.g. objects that are

behind us, or that are occluded), and sound plays an impor-

tant role in allowing us to localize objects in poor lighting

conditions. Importantly, our senses of sight and hearing are
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Figure 1. Taking the stereo sounds as input, our proposed cross-

modal auditory localization system can recover the coordinates of

moving vehicles in the reference frame purely from stereo sound

and camera meta-data, without any visual input.

fundamentally integrated and co-registered—for instance,

we can localize an object and accurately point to it, whether

we see it, or hear it with our eyes closed. This registration

of auditory and visual information into a common reference

frame gives us the ability to integrate audio and visual in-

formation together when both are present, or to rely on just

one when the other is absent.

Here, we seek to build a system that can learn auditory-

visual correspondences in a self-supervised way, allow-

ing us to perform a classic visual object detection task—

drawing bounding boxes around target vehicles—using au-

dio and camera meta-data information alone. Stereo audio

provides rich information about the location of objects, due

to arrival time and sound level differences between two spa-

tially separated microphones. Figure 1 gives an example

to illustrate the setting of the problem. When we see that

a car is moving, we can hear the engine and road sounds

at the same time. The goal of our work is to learn to re-

cover the coordinates of moving vehicles purely from stereo

sound, without any visual input. Such a system has a variety

of practical applications. For instance, a traffic monitoring

system could be deployed using just microphones, which
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are less expensive, lower power, privacy-preserving and re-

quire less bandwidth than cameras (the camera would only

be required during a brief training phase). Likewise, co-

registered audio-visual localization could be used to aug-

ment visual tracking in a robot, allowing it to perform well

even under the poor lighting conditions.

Directly training an audio-only localization system in a

supervised setting is cumbersome, since manually associ-

ating bounding boxes of objects with their corresponding

audio would require extensive, labor-intensive manual an-

notation. Instead, we capitalize on the natural correspon-

dence of audio and visual streams contained in the unla-

beled videos, using a self-supervised training approach. In-

tuitively, our system can learn to localize moving objects

by seeing and hearing the object move simultaneously. Our

proposed framework, which we refer to as cross-modal au-

ditory localization, is built on a student-teacher training pro-

cedure [5, 29, 1, 15, 19]. It consists of a vision teacher

network and a stereo-sound student network, enabling ob-

ject detection knowledge to be transferred across modalities

during training time. Specifically, we first use the vision

teacher network to detect the objects (in this case, moving

vehicles) in videos, and we train a stereo-sound network

that maps the audio signals to the bounding box coordi-

nates predicted by the vision network. Then at test time,

the student sound network can directly predict object coor-

dinates from sounds. We evaluate our cross-modal auditory

localization approach on a newly collected Auditory Vehicle

Tracking dataset. Our results show that the proposed sys-

tem significantly outperforms several baseline approaches,

measured by a set of existing metrics in computer vision. In

summary, our work makes the following contributions:

• To the best of our knowledge, we are the first to ap-

proach the problem of localizing objects in a visual

reference frame, purely from audio signals.

• We propose to leverage the correspondences between

vision and sound in the unlabeled videos as supervi-

sion to train a network that can transfer the knowl-

edge of object locations from the visual modality to

the sound modality.

• We have collected and annotated a new Auditory Vehi-

cle Tracking dataset for this new task. We expect that

this dataset can help advance research in the area of

cross-modal (vision+audio) perception.

• We demonstrate that the proposed cross-modal audi-

tory localization system works well for localizing ve-

hicles through sound alone, and even outperforms di-

rect visual tracking under poor lighting conditions.

2. Related Work

Our work can be uniquely positioned in the context

of two recent research directions: sound localization and

cross-modal learning.

2.1. Sound Localization

Localization using sound is a well-established area of

study. Some organisms and man-made systems use active

techniques for sound localization and auditory scene per-

ception. Echolocation involves emitting sound waves and

analyzing the returning reflected sound waves to estimate

the distances of obstacles. Echolocation is commonly ob-

served in animals that operate in dark or turbid environ-

ments, e.g. bats and dolphins rely on echolocation to po-

sition themselves and to locate prey. Based on the same

principles, engineers have designed sonar (Sound Naviga-

tion and Ranging) systems [38]. Sonar is especially com-

mon in underwater and robotics applications [23, 37].

Passive audio localization technology typically in-

volves using microphone arrays and beam-forming tech-

niques [11]. The timing differences in the sound received

by the different microphones can be used to estimate the

location of the sound. Even smaller devices such as smart

home speakers often use several microphones in order to

improve sound quality. For example, [33] developed tech-

niques to improve automatic speech recognition accuracy

using multichannel audio inputs. Using multichannel audio

has also been shown to be advantageous in other scenarios,

such as sound source separation [27]. Our work here uses

a stereo microphone system, which is the simplest system

that can take advantage of spatial measurement of sound

for localization.

The present work is also related to previous work in lo-

calizing sounds in visual inputs [20, 14, 22, 9, 8, 24, 4, 35],

which aims to identify which pixels in a video are asso-

ciated with an object making a particular sound. Recent

approaches [4, 35, 40, 18] have trained a deep neural net-

work to measure the correlations between visual and sound,

and then used network localization techniques to locate the

sound source in images. Where this past work sought to lo-

calize sound sources in images when both visual and audio

inputs are present, here we instead seek to locate objects

within a visual reference frame using audio inputs only at

test time.

2.2. Cross­modal Self­supervised Learning

Our work is in the domain of self-supervised learning,

which exploits implicit labels that are freely available in the

structure of the data. Audio-visual data offers a wealth of

resources for knowledge transfer between different modali-

ties [5, 12, 34, 36]. Our work is also closely related to the

student-teacher learning paradigm [7, 21, 5, 2, 16], where a

student network attempts to mimic the teacher network out-

puts. For example, [29] used sound signals as supervision to

train visual networks, [5] used visual features to supervise

the learning of audio networks, and [3, 28] used sound and

vision to jointly supervise each other. [18, 26] also explored

how to generate spatial sound for videos. More recently,
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[40, 39, 13, 17, 32] used the visual-audio correspondence

to separate sound sources. In contrast to previous work that

has only transferred class-level information between modal-

ities, this work transfers richer, region-level location infor-

mation about objects.

3. Approach

Central to our approach is the observation that the natu-

ral synchronization between vision and sound in unlabeled

video can serve as a form of self-supervision for learning. A

machine could therefore learn to predict the location of an

object by seeing and hearing many examples of moving ve-

hicles that produce sound. We model the learning problem

using a student-teacher framework. Our system is trained

simultaneously using video frames and sounds, which al-

lows the auditory student network to learn how to localize

vehicle bounding boxes from the visual teacher network.

We first introduce the building blocks of our cross-modal

auditory localization system, and then we present how to

transfer the knowledge in the visual vehicle detection model

to the sound signals given the camera meta-data by training

the audio subnetwork using object detection loss and fea-

ture alignment constraint. Finally, we present a temporal

smoothing approach to track the vehicles over the time. We

outline the framework of our proposed approach in Figure 2.

3.1. Network Architectures

Our auditory object localization system is composed of

two key components: a teacher vision subnetwork and a

student audio subnetwork.

Vision Subnetwork. We adopt the YOLOv2 [31] for the

vision-based teacher network, since it offers a good trade-

off between the speed and accuracy for object detection.

YOLOv2 [31] is a modification of YOLO [30] with batch

normalization, high image resolution, convolutional with

anchor boxes and multi-scale training, which is thus capa-

ble to simultaneously predict multiple bounding boxes and

their class probabilities directly from full images in a single

stage.

The backbone of YOLOv2 is a Darknet, which con-

sists of 19 convolutional layers and 5 max pooling layers.

To make it more suitable for the object detection, the last

convolutional layer is replaced by three 3×3 convolutional

layers with 1024 filters, followed by a 1×1 convolutional

layer with the number of outputs to be detected. Similar to

the identity mappings used in ResNet, there is also a pass-

through layer from the final 3×3×512 layer to the second to

last convolutional layer to aggregate the fine-grained level

features. To make the model more stable and easier to learn,

the network is trained to predict the location coordinates rel-

ative to the location of the anchor boxes.

To prepare the data, we first decompose each video clip

into several T = 1s video segments1, and then pick the

middle frame of each segment as the input to the teacher

network. During training, each middle video frame is fed

into a YOLOv2 model pre-trained on Pascal VOC 2007 and

VOC 2012 dataset to obtain the vehicle detection results. In

order to make the detection results smoother, we also apply

non-maximum suppression (NMS) as the post-processing.

Audio Subnetwork. We cast object detection from the

stereo sound as a regression problem. We take the object de-

tection results produced by the teacher vision subnetwork as

a pseudo-labels, and then train a student audio subnetwork

(StereoSoundNet) to regress the pseudo bounding box co-

ordinates directly from the audio signals. Considering dif-

ferent camera angle might bring relatively larger change to

visual content than the audio, we resolve it by explicitly tak-

ing the meta-data of the camera as input when training the

StereoSoundNet. The meta-data here includes the camera

height, pitch angle, and orientation between the camera and

a street.

We first convert each 1-second audio segment into spec-

trograms through Short-Time Fourier Transform (STFT).

Since there are two channels in the stereo sounds, we com-

pute their spectrograms separately and then stack them as

the input to the StereoSoundNet. To transform the F-T

(frequency-time) representations of the input audio spectro-

gram to the view of the camera, we first use 10 strided con-

volutional layers, where each is followed by a batch normal-

ization layer and a ReLU activation function, as an encoder

to compress the stereo sound signals as a 1×1×1024 fea-

ture map, removing the spatial resolution. And then we em-

ploy a multilayer perceptron to encode the meta-data into a

1×1×128 feature map. After concatenating the compressed

sound information and encoded meta-data channel-wise, a

decoder, which consists of 2 fully connected layers and 3

de-convolutional layers, is used to reconstruct the spatial

resolution and map the audio information to the camera

view. The final output is similar to the YOLOv2 and we

adopt the object detection loss used in YOLOv2 to train the

StereoSoundNet.

3.2. Transfer of Knowledge from Vision to Sound

In order to transfer knowledge from vision object detec-

tion models into the sound modality, we use both the object

detection loss and feature alignment loss to train the Stere-

oSoundNet.

Transfer object detection classifiers. During training, we

take the output of a well-established vision-based YOLOv2

object detection model, and then train the audio subnetwork

to recognize and localize the objects. Concretely, we train

the audio subnetwork using three loss constraints as sug-

1 The localization results could be improved with the increasing length

of the video segments, but the performances remain stable for the segment

longer than 1 second.
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Figure 2. The framework of cross-modal auditory localization. We illustrate the learning phase by jointly using sounds and frames from

videos. We first decompose a video into several video segments, where each is 1 seconds long. During training, a pre-trained YOLOv2

network predicts bounding boxes of the middle video frame as pseudo-labels, while the auditory student network takes pre-computed

spectrograms of sounds and camera meta-data as input to regress that pseudo-labels and also to align the internal feature representation of

the vision network. During testing, the auditory network can work independently to detect vehicles.

gested in the [31], including bounding box IoU prediction,

bounding box coordinate regression, and class probabilities

prediction. In our case, we predict 5 boxes for each location

on the output feature map, with 4 coordinates, 1 Intersection

over Union (IoU), and 20 class probabilities for each box.

So the output of the audio subnetwork is of size H×W×125.

Alignment of Feature Representations. We additionally

add a feature representation alignment constraint into the

training loss. The observations in [6] indicate that the inter-

nal high-level representations for the emerging objects can

be shared across modalities, even though each input has its

own distinct features in the early stage of the network. We

expect the feature representations of two modalities to be

close enough under certain distance metrics.

Following [6], we use the ranking loss to constrain the

features. Specifically, the feature alignment loss is

N∑

i

∑

j 6=i

max{0,∆− ψ(fsi , fvi
) + ψ(fsi , fvj )}, (1)

where N is the number of training samples in one mini-

batch, ∆ is a margin hyper-parameter, ψ is a similarity

function, and j iterates over negative examples in the mini-

batch. Here, fsi and fvi indicate the predicted feature rep-

resentation of the ith sound clip from the student audio sub-

network and the corresponding feature representations from

the teacher vision subnetwork respectively. This loss func-

tion encourages both aligned features for the paired input

and the discriminative features for the unpaired one. As for

similarity function ψ, we choose L-2 distance. That is

ψ(a, b) = ||a− b||2. (2)

Training and Inference. When training the audio subnet-

work, the goal is to enforce both the internal feature rep-

resentations and the final bounding box predictions of the

audio student subnetwork as close as the vision teacher sub-

network. We do not update vision subnetwork in the train-

ing phase. During testing, the audio subnetwork can work

independently, straight from the sound to bounding box lo-

cations and class probabilities. We keep the boxes whose

confident scores are higher than 0.5 as predicted bounding

boxes. If all confident scores are lower than 0.5, we select

one box with the highest score. Similar to vision subnet-

work, NMS is applied as the post-processing to eliminate

the repeated detected boxes.

Tracking. In order to create tracklets of vehicles in videos,

we proposed a tracking by IoU approach to aggregate the

objects bounding boxes across time. Specifically, we keep

the top 5 object proposal based on the confidence scores
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of the StereoSoundNet on each frame. We then initialize a

tube if any proposal box’s confidence score is higher than a

threshold τ1 (we set τ1 = 0.7). For each frame, it could be

possible to have more than one tube. We decide the next

bounding box in each tube by calculating the IoU score

between that box and 5 proposal boxes in the next frame,

and then select the box with the highest confident score in

the next frame if its IoU score is higher than a threshold

τ2 (we set τ2 = 0.4). We then use the selected bounding

boxes to update that tube. If no boxes are selected, we end

that tube. We only save the tube if the confidence scores

of first two boxes are both higher than a threshold τ3 (we

set τ3 = 0.4). This strategy can remove some incorrectly

initialized tubes. Finally, we apply an exponential smooth-

ing over all the frames in videos to obtain the tracklets in

videos.

4. Experiments

In this section, we first present a newly collected Au-

ditory Vehicle Tracking dataset, and then evaluate the per-

formance of our proposed cross-modal auditory localiza-

tion on it. We contrast our algorithm to several competing

baselines. We also demonstrate that our cross-modal au-

ditory localization is more robust than the visual tracking

system under the poor lighting condition. Finally, we ex-

amine the cross-scene generalization abilities and visualize

some cross-modal auditory localization results.

4.1. Dataset

We collected a new Auditory Vehicle Tracking dataset us-

ing a portable setup, composed of a smartphone and a Shure

MV88 digital stereo condenser microphone to record the

stereo sound. We attached a wide angle lens to the smart-

phone to increase the field of view. Videos were recorded on

15 different streets. We also adjusted the camera’s height,

pitch angle, and orientation of the camera relative to the

road to capture more diverse videos. The height of the cam-

era was varied from 0 to 2 meters with the pitch angle and

the rotate angle in the range of [−30◦, +30◦] and [−35◦,

+35◦]2, respectively. For each street, we randomly selected

6 camera angles within the range mentioned above. In the

first three rows of Figure 3, we present 15 different scenes

in our dataset. As for the last two rows, each of them shows

5 randomly chosen angles of the same scenes.

During video capture, we avoided parked vehicles that

do not make any sound in the scene. We also excluded

video clips that contained more than two vehicles, since

multiple car detection is still challenging. Therefore, af-

ter dataset post-processing, the raw videos are cropped into

3,243 short video clips (around 3 hours in total), which con-

2The negative sign indicates the downward direction in pitch angle and

the left direction in rotate angle.

Figure 3. Examples of the scenes in our dataset.

tain two cases: single car and two car conditions. The audio

was recorded at a sampling rate of 48kHz in stereo format.

4.2. Experimental Setup

Data Split. We split the video clips into three parts: 3,329

for training, 415 for validation, and 423 for testing. We

further decompose video clips into a number of 1-second

video segments as training and testing samples, leading to

227,810 samples for training, 27,779 samples for validation

and 28,672 samples for testing.

To collect an unbiased testing set for the evaluation, we

label the ground-truth bounding boxes location of the vehi-

cle on the middle frames of each testing sample using Ama-

zon Mechanical Turk (AMT). To be noted, the manually

labeled testing data are only used for the evaluation, not for

any model training.

Evaluation Metric. To evaluate our method, we used the

traditional object detection evaluation metric, Average Pre-

cision (AP). We report the AP at IoU 0.5 and 0.75 and

average AP across IoU thresholds from 0.5 to 0.95 with

an interval of 0.05. We used the center point of the pre-

dicted box to measure the localization accuracy on x and

y coordinates. Specifically, supposing (P x, P y) is the cen-

ter point of the closest predicted box to the ground-truth

box (Gx, Gy), we define the Center Distances (CD) of x

and y coordinates as CDx = 1

K

∑K

i |P x
i − Gx

i |/w and

CDy = 1

K

∑K

i |P y
i −Gy

i |/h, where K is the total number

of ground-truth box and w and h are the width and height

of the video.

Implementation Details. We train the StereoSoundNet for

60 epochs with initial learning rate as 0.0001, dividing it

by 10 every 20 epochs. The batch size is set to 80 and

we use the stochastic gradient descent optimization with a

weight decay of 0.0005 and momentum of 0.9. The fea-

ture alignment loss is implemented on the last feature map

of the teacher and student network and the margin hyper-

parameter ∆ is set to 0.2. The total loss is the sum of fea-

ture alignment loss and object detection loss, which have

the same weight during training.
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Approach AP@Ave AP@0.5 AP@0.75 CDx CDy

YOLOv2 42.39 79.54 41.62 6.46% 2.55%

Random 0.00 0.00 0.00 33.44% 26.09%

Waveform 5.87 23.14 0.91 15.63% 5.18%

Mono 11.80 38.57 3.31 14.49% 4.68%

w/o feature alignment 21.55 57.47 10.01 10.82% 4.06%

w/o meta-data 9.45 27.76 3.43 13.79% 12.26%

Ours 21.55 57.47 10.13 10.53% 3.98%

Ours (w Tracking) 25.05 60.70 15.96 7.76% 3.75%

Table 1. Compared results of cross-modal auditory localization in term of Average Precision (AP) and Center Distances (CD). Higher AP

number indicates Better results. Lower Center Distances (CD) number indicates Better results.

All videos in the datasets are in 24 fps with 1280×720

resolution. Each training or testing sample is a 1-second

video segment containing 24 frames and 1-second stereo

sound. To generate spectrogram, we first normalize the raw

waveform with its maximum value, then an STFT with a

window size of 1024 and a hop length of 256 is computed

on the normalized waveform. We further re-sample it on a

Mel-Frequency scale with 80 frequency bins, resulting in a

187×80 Time-Frequency (T-F) representation of the sound.

We re-size spectrogram and the RGB frame to 256×256

and 416×416, respectively. The meta-data is normalized to

[0,1] for stable training.

4.3. Baselines

To evaluate our framework, we compare against alterna-

tive approaches as baselines:

• Random: We randomly draw 1 or 2 boxes with ran-

dom size within the frame as auditory vehicle detection

results.

• Mono sound: For each audio clip, we simply add

the two channels into one channel, convert them into

one spectrogram and then feed them to the audio sub-

network. We maintain other parts same as the Stere-

oSoundNet.

• Raw Waveform: We apply the SoundNet [5] architec-

ture with the raw stereo sound waveform as the input,

instead of extracting the spectrogram from the audio.

We train the SoundNet using both the object detection

loss and feature alignment loss as well.

• W/O Meta-Data: We use the same encoder-decoder

based framework. We first use a 10-layer CNN to

encode the spectrogram into a vector and then use a

de-convolution network to map the vector to the ob-

ject bounding boxes. Similar to the StereoSoundNet,

we also use both the object detection loss and feature

alignment loss to train the audio subnetwork.

• W/O Feature alignment: We exclude the feature

alignment loss during training of the audio subnet-

work. Thus the audio stream directly learns to regress

The Number of vehicles Single Multiple

AP@Ave 26.53 11.58

AP@0.5 70.12 32.06

AP@0.75 12.61 5.21

Table 2. Auditory vehicle localization results of single and multi-

ple vehicles in terms of Average Precision (AP) and Center Dis-

tances (CD). Higher AP number indicates better results. Lower

Center Distances (CD) number indicates better results.

the bounding boxes generated by the teacher vision

subnetwork.

4.4. Experimental Results

4.4.1 Results Analysis

Comparisons of results with baseline approaches are re-

ported in Table 1. Unless otherwise specified, the reported

results do not consider tracking post-processing. It is clear

from the table that when our cross-modal auditory local-

ization is trained with both the object detection loss and

the feature alignment constraint, it outperforms all the au-

dio only baselines. Using tracking post-processing further

increases the performance of AP and also leads to more

consistent and smooth tracking. The oracle vision-based

YOLOv2 achieved 79.54% in terms of AP@0.5. Our Stere-

oSoundNet still has around 20% performance gap. We think

more training data and better microphone might further re-

duce the gap. We leave these to future work.

We also report the results on single vehicle and multi-

ple vehicles cases respectively. The results are shown in

Table 2. Although performance drops on multiple vehicles

cases, it is still able to produce convincing localization pre-

diction. These results indicate cross-modal auditory local-

ization can implicitly perform the sound separation and then

localize different moving vehicles simultaneously.
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car: 0.901
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Figure 4. Visualization of cross-modal auditory localization results

of one video clip and its corresponding input spectrograms.

4.4.2 Spectrogram v.s. Raw Waveform

We also compared two sound representations (i.e. spectro-

gram and raw waveform) that are commonly used in the

context of cross-modal learning. We use a SoundNet [5]

pre-trained on the large-scale audio dataset as the base

model of the audio subnetwork and then fine-tune it on our

car tracking data.

Results in Table 1 show that the spectrogram sound rep-

resentations clearly outperform the raw waveform format.

We speculate that the spectrogram tends to more directly

capture frequency differences contained in audio, which is

critical for the vehicle localization using sound only.

4.4.3 Mono Sound v.s. Stereo Sound

We further examine whether the stereo sound is necessary

for the cross-modal auditory localization to learn how to lo-

calize targets. Specifically, we compare, in Table 1, a base-

line training the audio subnetwork with the mono sound.

We simply add the two channels of stereo sound and then

convert it to a spectrogram.

We observe that the results are significantly worse with

mono sound as compared to stereo sound in terms of AP

score. We also observe that it is impossible to predict the

vehicle coming from the left or right just based on the sound

volume change over time. This indicates that stereo sound

provides stronger supervision for localization. In Figure 4,

we also visualize the input spectrograms and the corre-

sponding stereo sound localization results. At the beginning

of the video, there is a car on the right side of the frame, and

it is clearly observed that the amplitude of the right chan-

nel’s spectrogram is higher than the left channel. As the car

moves to the left side, the amplitude of the right channel

goes down while the opposite trend is observed on the left

channel.

Approach MOTA↑ ID Sw.↓ Frag.↓ FP↓ FN↓

Ours 13.9% 1100 1318 9974 13462

Ours (w Tracking) 18.7% 954 502 9016 12868

Table 3. Compared results in term of tracking metrics. “↑” means

that higher is better and “↓” represents that lower is better.

4.4.4 Tracking Performances

In order to measure the tracking performance, we lever-

age multiple object tracking accuracy (MOTA), identity

switches (ID Sw.), fragment (Frag.), false positive (FP) and

false negative (FN) as evaluation metrics [10, 25]. For the

baseline without tracking post-processing, we randomly as-

sign an ID to each box as such baseline cannot predict ID.

Results are shown in Table 3. Using tacking post-processing

achieves better MOTA and ID Sw., which shows its superi-

ority in detecting objects and keeping their trajectories. It

is worth noting that random ID assignment is a strong base-

line as it does not cause ID switches under the single car

condition. The better Frag., FP, and FN, which are inde-

pendent to ID assignment, indicates that with tracking post-

processing, our model incurs fewer switches from tracked

to not tracked, less false positive detection and less missing

objects.

4.5. Performances Under the Poor Lighting

We conduct additional experiments to evaluate whether

our auditory object tracking is still robust under poor light-

ing conditions, where tradition vision-based object tracking

typically fails. We first collect 5 videos at night and then la-

bel the object localization on the key frames using Amazon

Mechanical Turk (AMT) for the evaluation.

We directly applied the StereoSoundNet trained on day-

time data to the nighttime scenario without any fine-tuning.

The results are reported in Table 4. It is not surprising that

the visual tracking system fails in these scenarios, due to the

fact that vision-based algorithms are very sensitive to poor

lighting. However, we observe that our cross-modal au-

ditory localization maintains robust tracking performance,

compared with the vision-based system. We also visualize

Approach AP@0.5

Random 0.00

Yolov2 (vision) 6.78

Ours (audio) 30.88

Table 4. Auditory vehicle localization results under poor lighting

conditions in terms of Average Precision (AP). Higher AP number

indicates better results
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(a) Cross-modal auditory localization results in different scenes. (b) Failure cases of visual object localization system.
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Visual tracking Sound tracking

Visual tracking Sound tracking

Visual tracking Sound tracking

Figure 5. Visualization of cross-modal auditory localization results in different scenes and the common failure examples using visual object

localization system.

w meta-data w/o meta-data

AP@Ave 12.24 0.00

AP@0.5 42.79 0.00

CDx 10.17% 43.53%

CDy 5.02% 35.23%

Table 5. Generalization of auditory vehicles detection system.

Higher AP number indicates better results. Lower Center Dis-

tances (CD) number indicates better results.

some intriguing examples in Figure 5. More tracking results

can be viewed in demo videos.

4.6. Generalization on Novel Scenes

One benefit of using camera meta-data for auditory ve-

hicle localization is that it allows better generalization to

novel scenes, as meta-data can explicitly provide the cam-

era’s position when the visual reference frames were cap-

tured. In Table 5, we explore the generalization of our audi-

tory object detection system by comparing performances on

new scenes. Specifically, we split the videos collected in 15

scenes into two disjoint parts: 10 scenes for training and the

other 5 scenes for testing. Note that the camera shots of the

testing data may be different from the training data. We ob-

serve that with the help of prior knowledge about the cam-

era height and angle, generalization could be significantly

improved.

4.7. Visualization

We visualize some cross-modal auditory localization re-

sults under different scenes with different camera positions

on Figure 5 (a). The Figure demonstrates that our Stere-

oSoundNet performs robustly in different scenes with dif-

ferent camera angles using only stereo sound and camera

meta-data as input. Figure 5 (b) reveals some interesting

cases we found in our datasets that visual object localization

framework fails to track the moving cars due to occlusion,

backlighting, reflection, and bad lighting condition, while

our StereoSoundNet succeeds. Our proposed cross-modal

auditory localization system has good potentials to assist in

the visual localization of objects in these cases of less-than-

ideal image quality.

5. Conclusion

In this work, we leverage stereo sound to perform cross-

modal auditory localization. We created a new Auditory Ve-

hicle Tracking dataset that consists of over 3000 video clips

for studying this task. We also provide an automatic quan-

titative method to evaluate the models and the results. To

address this challenging problem, a novel student-teacher

based network is proposed, which can successfully transfer

knowledge from a vision-based object detection network to

the sound modality. The new auditory vehicle tracking al-

gorithm also demonstrates its potentials to augment visual

tracking systems under poor light conditions. Areas for fu-

ture work include extending our approach to more simulta-

neous scenes and to more different kinds of objects.
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