2401.08577v1 [cs.CV] 16 Jan 2024

arxXiv

MultiPLY: A Multisensory Object-Centric
Embodied Large Language Model in 3D World

Yining Hong??3

, Zishuo Zheng!, Peihao Chen!, Yian Wang®, Junyan Li'

, Chuang Gan'?

'UMass Ambherst, 2 UCLA, 3MIT-IBM Watson Al Lab

https://vis-www.cs.umass.edu/multiply

Temperature Tactile

The donut is cold. & . Itis hard when “
touching it. W

k

Opening it, |
see a donut.

Audio

Multisensory Chatting

I What tools can | use to drive

| heard microwave Wi
" beeping and walk to it

} You can use hammer but no hammer in this
room. You can also use a hard bottle

1 a nail in wall?

1
| There are two bottles. Which
I one should | use?

? Let me touch and hit them. ¥ )
You should use bottle 1 as it is hard and
! made of metal

Multisensory Question-Answering

1
Is the heater turned on? :
e
| found two heaters. The left & :
one is hot and working while
the right one is not. :

Multisensory Navigation

i Lead me to the sound source. ]

| heard the sound. P
It may be emitted by a phone.
The phone may in the living room

Multisensory Captioning

1 N

I i

| !

| | yw It !s a pink piggy saving jar. W q)
| Itis hard and made of ceramic.

1

!

Describe
this toy

Figure 1. We propose MultiPLY, a multisensory embodied LLM that encodes object-centric multisensory representations (e.g., visual,
audio, tactile, and thermal), by deploying an embodied agent to engage with the 3D environment. MultiPLY excels at multiple tasks
including multisensory captioning, question answering, dialogue, manipulation, navigation, tool use, task decomposition, and so on.

Abstract

Human beings possess the capability to multiply a
mélange of multisensory cues while actively exploring and
interacting with the 3D world. Current multi-modal large
language models, however, passively absorb sensory data
as inputs, lacking the capacity to actively interact with the
objects in the 3D environment and dynamically collect their
multisensory information. To usher in the study of this area,
we propose MultiPLY, a multisensory embodied large lan-
guage model that could incorporate multisensory interac-
tive data, including visual, audio, tactile, and thermal in-
formation into large language models, thereby establishing
the correlation among words, actions, and percepts. To this
end, we first collect Multisensory Universe, a large-scale
multisensory interaction dataset comprising 500k data by
deploying an LLM-powered embodied agent to engage with

the 3D environment. To perform instruction tuning with pre-
trained LLM on such generated data, we first encode the 3D
scene as abstracted object-centric representations, and then
introduce action tokens denoting that the embodied agent
takes certain actions within the environment, as well as state
tokens that represent the multisensory state observations of
the agent at each time step. In the inference time, MultiPLY
could generate action tokens, instructing the agent to take
the action in the environment and obtain the next multisen-
sory state observation. The observation is then appended
back to the LLM via state tokens to generate subsequent
text or action tokens. We demonstrate that MultiPLY out-
performs baselines by a large margin through a diverse set
of embodied tasks involving object retrieval, tool use, mul-
tisensory captioning, and task decomposition.
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1. Introduction

Human beings inhabit an extraordinary multisensory world
- one in which we constantly explore and interact with the
3D environment, collecting and analyzing a mélange of sen-
sory data to accomplish various tasks [56]. Picture yourself
situated within an embodied environment depicted as Fig-
ure 1. To reason about the question “is the donut ready for
eating”, you begin by hearing the microwave beep. Sub-
sequently, you decide to investigate whether the donut is
inside the microwave. Once you locate the donut, you may
touch it, sensing its hardness and coldness, leading you to
the conclusion that the donut is not yet ready.

Existing multi-modal large language models (e.g.,
LLaVA [39], Flamingo [1], BLIP-2 [37], PaLM-E [12])
excel at numerous vision-language tasks. However, they
mainly focus on 2D scene understanding, struggling to rea-
son about and interact with 3D environments. Recent works
such as 3D-LLM [32] take preliminary steps to encode
holistic 3D point clouds as inputs and show impressive re-
sults on 3D reasoning tasks, while suffering from expensive
training and inefficient reasoning for objects. More impor-
tantly, these models fall short of the ability to capture multi-
sensory information that goes beyond vision and language.

Efforts have been made to bind representations from dif-
ferent modalities [28], and adapt them to pre-trained LLMs
[31, 40]. However, they often focus on a single object [30]
or 2D image [28], unable to encode a large 3D environ-
ment and interact with the 3D embodied environment. For
example, to address a question illustrated in Figure 1, a hu-
man would need to touch the donut to sense its softness and
temperature, a capability well beyond the current scope of
multi-modal LLMs.

Looking ahead, challenges inevitably exist for building
embodied multisensory large language models. The first
challenge resides in the paucity of multisensory interaction
data for training such an LLM. The next challenge lies in
the appropriate representations of the 3D scenes and mul-
tisensory information of the objects. Humans could hold a
coarse impression of the scene by abstracting the scene as
an object-centric representation and attending to the object
details when further interacting with the objects. It’s essen-
tial for LLMs to also be able to flexibly switch between an
abstracted object-centric representation and detailed multi-
sensory information of the objects. Lastly, existing LLMs
are not tailored for instruction tuning with interaction data.
They often take passive data as inputs and generate single-
step outputs, incapable of connecting the words, actions,
and percepts to engage with an embodied environment.

To this end, we propose MultiPLY, a multisensory em-
bodied LLM that could encode multisensory object-centric
representations, including visual, audio, tactile, and ther-
mal information, by deploying an LLM-powered agent to
engage with the 3D environment. We first collect Multisen-

sory Universe, a large-scale multisensory dataset compris-
ing 500k data collected by an agent actively engaging with
3D embodied environments. We utilize the 3D environ-
ments from Habitat-Matterport 3D (HM3D) dataset [46],
and enrich the environments by adding interactive objects
with rich sensory data from ObjectFolder [20] and Obja-
verse [11]. We prompt ChatGPT to create the input and
output data of tasks ranging from multisensory captioning,
question answering, dialogue, manipulation, task decompo-
sition, and so on. An embodied agent explores the environ-
ment and interacts with the objects in the environment to
get multisensory observations of these tasks.

To perform instruction tuning on such generated data, we
first encode the 3D scene as an abstracted object-centric rep-
resentation, informing the LLM of what objects are in the
scene. We further devise an additional set of action tokens
such as NAVIGATE, OBSERVE (for obtaining object point
cloud), TOUCH (for tactile and thermal information), HIT
(for getting the impact sound) to denote that the agent takes
the actions to explore the environment and interacts with the
objects. By interacting with the objects, more detailed mul-
tisensory information could be unveiled as outcomes of the
actions and encoded via a set of state tokens. All sensory
observations are encoded by different sensor encoders and
connected to the LLM using sensor-to-image adapters.

In the inference time, MultiPLY could generate a series
of action tokens through the LLM, instructing the agent to
take the action and receive the outcome of the action as
the next-state multisensory observation. The observation
is then appended back to the LLM, enclosed by a set of
state tokens, facilitating the next-step generation. Our Mul-
tiPLY, trained on Multisensory Universe, outperforms base-
line models by a large margin on object retrieval, tool use,
multi-modal captioning, and task decomposition.

To sum up, the contributions of this paper are:

* We propose Multisensory Universe, a large-scale mul-
tisensory dataset comprising 500k data collected by an
agent engaging with the 3D embodied environment, cov-
ering a diverse set of tasks involving multisensory cap-
tioning, question answering, dialogue, manipulation, task
decomposition, and so on.

* We propose MultiPLY, a multisensory embodied LLM
that could encode multisensory object-centric representa-
tions with a novel set of action tokens and state tokens for
the end-to-end instruction tuning of a pre-trained LLM.

» Experimental results on object retrieval, tool use, mul-
tisensory captioning, and task decomposition show that
MultiPLY outperforms baselines by a large margin.

2. Related Works

Multisensory Learning Multisensory learning aims to
learn from information from different sensors, including
cameras, microphones, tactile sensors, etc. For visual-audio



learning, the datasets collecting visual-audio pairs in real-
world [10, 43] or rendering sounds in simulators [6, 8, 17]
promote the development of this field of research. Ear-
lier works seek to combine audio and visuals informa-
tion for audio-visual event localization [27, 57, 60, 61],
sound source localization in visual frame [14, 16, 19, 66,
67], visual-guided sound editing [7, 18, 25], and visually-
aligned sound generation [9, 15, 44, 50]. As for visual-
tactile learning, many works focus on building realistic tac-
tile simulation system [41, 58] or collecting tactile data
of real objects [23, 24]. With these tactile data, re-
searchers combine visual and tactile data for cross-modal
retrieval [3, 21], robotic manipulation [4, 5, 36], and 3D
reconstruction [48, 49, 52]. Different from the previous
works, our MultiPLY aims to combine visual, audio, tactile,
and thermal information in an interactive 3D environment
for diverse embodied tasks.

Multi-modal Large Language Models LLMs [42, 53, 55,
65] demonstrate prowess across numerous domains. Re-
cent works [1, 37, 39] attempt to empower LLMs with vi-
sual understanding ability using large-scale image-text pair
data and apply the trained models on downstream tasks like
visual question-answering, image captioning, and multi-
modal dialogue. Researchers [32, 51, 62, 64] also focus
on incorporating 3D visual information into LLMs to em-
power spatial reasoning abilities. In addition to incorpo-
rating visual information into LLMs, recent works [30, 31]
attempt to enable LLMs to understand multi-modal infor-
mation. AnyMAL [40] presents a unified model that aligns
multi-modal information including text, image, video, au-
dio, and IMU motion reading. However, these works pro-
cess passive information rather than actively interact with
the environment. In contrast, our work focuses on an em-
bodied large language model, which could actively interact
with the multi-modal 3D world by navigating in the envi-
ronment, touching objects to get tactile and thermal infor-
mation, hitting objects to get impact sound, etc.

3. The Multisensory-Universe Dataset

In this section, we illustrate the process of collecting the
Multisensory-Universe dataset. As presented in Figure 2,
we begin by explaining how we input interactive objects
into the scene to construct object-centric 3D scenes for
our dataset in Section 3.1. Subsequently, we outline the
methodology for obtaining sensor data from these objects in
Section 3.2. Moving on to Section 3.3, we describe the de-
ployment of an embodied agent tasked with proposing tasks
and exploring the environment to solve them. The resulting
interaction data are collected as paired interaction-language
data, which serves as training input for the LLM.

, Choose / touch
the donut

Context (Bounding box, material, temperature, hardness......):
Room1: CD player: [0.3, 0.3, 0.5], plastic, hot, hard......
Room2: Donut: [0.2, 0.3, 0.1], dough, cold, hard......;

: Instruction (Shortened Version): :
I You are an Al assistant / task generator in the room. :
: You need to generate a task in the scene. 1
: Demonstration: For Room 1: [Few shot example] :
1 Generate similar responses for Room 2. 1
| Response : For Room 2: |
1 Q:Is the donut ready to eat? !
: tlinput: Q+lseeadonut. 1
: output: <select> [Choose {donut}] :
1 t2input: Q+|seeadonut. <select> 1
: output: <touch> [tactile] [temperature] :
I t3input: Q+1Isee adonut. <select> <touch> [tactile] [temperature] :
: output: It is hard, cold and not ready to eat. 1

Figure 2. Multisensory-Universe Generation Pipelines. We first
add a set of new interactive objects in the embodied environments,
then prompt ChatGPT to generate diverse tasks about the environ-
ment. An embodied agent interacts with the objects to retrieve the
multisensory information and construct interaction data.

3.1. Inputting Interactive Objects into 3D Scenes

We build our scenes on top of the Habitat-Matterport 3D
(HM3D) semantics dataset [46, 63], which has 216 3D
spaces and 3,100 rooms within those spaces. However, the
existing objects in HM3D scenes, with insufficient sensor
data and limited diversity, are not interactive in Habitat-sim
[47]. Thus, we propose to add new interactive objects to the
scenes, allowing agents to interact with them using Habitat-
sim. The objects we add to the scenes are from two sources:
1) ObjectFolder [20, 22], which contains 1k object meshes,
with impact sounds of these objects stored in implicit neu-
ral fields, and annotated with object materials. 2) Objaverse
[11] is a universe of 800K 3D objects spanning rich cate-
gories. We select the objects that could appear in indoor
scenes.

We ask ChatGPT [42] to choose 1-10 new objects
from ObjectFolder and Objaverse, and generate the proper
bounding boxes for these newly-added objects. ChatGPT is
also required to specify objects’ material categories (e.g.,
ceramic, plastic, steel) and properties(e.g.,, deformation,
elasticity hardness), as well as temperature labels (e.g.,
whether the objects are hot, cold, or the same as room tem-
perature). Our prompt to GPT contains all existing objects
in HM3D scenes and their bounding boxes, as well as sev-
eral preferences: 1) Select some similar objects. For exam-
ple, choose two bottles of similar appearances and specify
one of them as plastic and the other one as steel. In this way,



information from different sensors needs to be collected to
resolve the ambiguity. 2) Select objects that are compatible
with the environment and can be utilized together for in-
teresting tasks. For instance, in a kitchen environment, we
could put ingredients and tools for cooking. We also give
some few-shot prompting examples to GPT.

3.2. Object Sensor Data Acquisition

We illustrate how we collect sensor data of added objects.

e Tactile We use DiffTactile [2] which leverages MLS-
MPM [33] to simulate rigid, elastic, elasto-plastic objects.
We put meshes of added objects into DiffTactile, which
uses the bubble gripper with several position markers to
touch the objects at pre-defined positions. The tactile
readings are the initial and final positions of the markers,
which represent how much the bubble deforms.

* Ambient Sound Each object could emit ambient sound
to facilitate navigation or reasoning, or serve as cues for
informing the agents what’s going on in the environment.
We prompt ChatGPT to match the sounds from AudioSet
[26] with the semantic labels of the added objects. Given
the Audioset description, ChatGPT needs to select objects
in the candidate list that are possible to make this sound.

* Impact Sound Impact sound represents the sound that we
hear when we strike or hit an object, which is crucial for
identifying the material of an object. We get the impact
sounds of ObjectFolder objects by querying their implicit
sound fields given a hitting position and a force.

* Temperature Given the temperature label of the object,
we ask ChatGPT for a proper temperature of each object.

3.3. Embodied Agents for Data Collection

Inspired by [59], we utilize LLM-powered embodied agents
to collect the data in the constructed scenes. We first prompt
ChatGPT to propose tasks. Then we place an embodied
agent to interact with the objects in 3D environments to per-
form the task and collect interaction data.

Generating Task Proposals We follow the box-
demonstration-instruction-based ~ prompting method
proposed by [32], and prompt ChatGPT to generate tasks.
In addition to the ground-truth bounding boxes of objects,
we also input the ground-truth materials, deformability, and
hardness, as well as the ground-truth temperature labels of
all objects. ChatGPT is provided with a list of actions to be
performed in the environment. Then it generates specific
tasks requiring interactions with objects, a sequence of
words representing pseudo ground-truth actions, and
language reasoning outputs which are deduced from the
ground-truth feedback labels of the objects (note that
ChatGPT has access to all material and temperature labels,
so that it could generate a sentence like “it feels cold”
after the “touch” action). We cover a diverse set of tasks
including multisensory captioning, question answering,

embodied dialogue, navigation, object manipulation, tool
use, rearrangement, task decomposition, and so on. We
append all prompts in Supplementary Material.

Interaction Data Collection The embodied agent first ran-
domly explores the environments to collect initial RGBD
environment data. Given the actions, the agent executes the
actions to interact with the objects in the environment and
obtains the sensory feedback. For example, when the action
is “touching an object”, the agent returns the tactile and tem-
perature readings of it. We store all the interaction results of
the actions. From one interaction, we could incrementally
construct several input-output data, denoting the interaction
at different steps, as shown in Figure 2.

4. MultiPLY

In this section, we introduce the MultiPLY framework. As
in Figure 3, we first encode the scene as an abstracted
object-centric representation, while multisensory details of
objects are unveiled only when the agent executes an action
and interacts with them. We devise a set of action tokens
denoting the actions of agents to interact with the environ-
ment. Interaction results are appended back to the LLM via
state tokens to generate subsequent text or action tokens.

4.1. Object-Centric Scene Representations

Our model first takes the features of the 3D environment ex-
plored by the agent as inputs to form an initial impression of
what the scene looks like. We follow 3D-LLM and utilize
2D features to construct 3D scene features, so that the visual
features could be seamlessly fed into a pre-trained vision-
language model without adaption. However, the point cloud
encoding of 3D-LLMs makes it hard for LLMs to process
thousands of points at a time. Alternatively, when humans
explore a 3D environment, we abstract over the scene and
roughly form an idea of objects and their locations without
remembering all the details. Likewise, we propose to repre-
sent the environment as an abstracted object-centric repre-
sentation. We use concept graphs [29] powered with a CLIP
[45] encoder to first encode the objects in the observed im-
ages, and fuse the outputs in images to 3D by multi-view
association. We also add position embeddings to the visual
features of objects. We finally get O x 1024 features as an
abstracted object-centric scene representation, where O is
the number of objects. If there’s an ambient sound emitted
by an object in the 3D environment, we encode the sound
using the CLAP [13] audio encoder and get a 1024-dim
feature. The object-centric scene representation and am-
bient sound representation serve as the initial inputs to the
LLM, enclosed by tokens as <SCENE>, </SCENE> and
<AMBIENT_SOUND>, </AMBIENT_SOUND>.
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<select><navigate>

Q: Is the donut ready to eat? v

—>A: <scene> @ <\scene> <ambient_sound> [l <\ambient_sound > | heard microwave beeping and

plan to go toward it <select> <navigate>. After navigation, | see a donut <select>
<touch><tactile> [l <\tactile> <temperature> l<\temperature>. No, it is hard and cold.
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Figure 3. Overview of our MultiPLY. We first encode the scene as an abstracted object-centric representation, while multisensory details
of objects can only be unveiled when the agent executes an action and interacts with them. We devise a set of action tokens denoting the
actions of agents to interact with the environment. The interaction results are appended back to the LLM via state tokens.

4.2. Action Tokens

We devise a set of action tokens that denote the agent’s in-
teraction with the environment, which are listed below:

* <SELECT> token selects an object to interact with. The
object is chosen by the attention between the language
features (i.e., the last hidden state of the LLM of the
SELECT token), and the CLIP visual features of the ob-
jects in the environment. It selects the object with the
maximum attention score.

* <NAVIGATE> token asks an agent to navigate to the
selected object. Note that the navigation action could
be executed by any pre-defined pathfinder module and
is not the research focus of this paper.

* <OBSERVE> token asks an agent to scrutinize an object
that is chosen and get the object details (in the form of
the detailed point cloud of the object).

* <TOUCH> token allows the agent to touch the object that
is chosen, to get the tactile and temperature information.

* <HIT> token allows the agent to hit the chosen object
to get the impact sound.

* <PICK-UP>, <PUT-DOWN> tokens enable the agent to
pick up or put down a chosen object.

¢ <LOOK—-AROUND> token allows the agent to rotate its
head and get nearby objects.

4.3. State Tokens

We devise another set of state tokens to feed the interaction
results back to the LLM.

* <OBJECT> encodes the obtained object points when
the agent <OBSERVE>s an object. Specifically, we get
the 3D features aggregated from 2D CLIP features [32]
and add position embeddings to the 3D features. We
build N x 1024 object point cloud features where N is
the number of points.

* <IMPACT_SOUND> encodes the obtained impact sound
when the agent <HIT>s an object. We use CLAP audio
encoder to encode the sound and get 1024-dim impact
sound representation. Since the CLAP features are not
aligned with the LLM, we use a sound projector (one
linear layer) to map to the feature space of the LLM.

* <TACTILE> encodes the obtained tactile information
when an object is being <TOUCH>ed by an agent. We
transform the tactile reading as a heatmap and use CLIP
to encode the heatmap. We mean-pool over the patches
and get 1024-dim temperature features. We use a tactile
projector (one linear layer) to map to the feature space
of the LLM.

* <TEMPERATURE> encodes the obtained temperature.
We transform the temperature reading as a heatmap and
use CLIP to encode the heatmap. We mean-pool over
the patches and get 1024-dim temperature features. We
use a temperature projector (one linear layer) to map to
the feature space of the LLM.

4.4. Training & Inference

Model Architecture We use LLaVA [38] as our backbone
multi-modal large language model. Since our visual fea-
tures have been aligned to the same embedding space as
LLaVA using ConceptGraphs [29], we could directly use
LLaVA’s vision-to-language projector without pretraining
on vision-language data. For other sensor modalities, we
leverage a lightweight adapter, which is a one-layer linear
projector to project the sensor features into the text token
embedding space of LLaVA.

Modality Alignment As stated above, the tactile, sound,
and temperature representations are not aligned with the
language features. In the first stage, we train the sensor-to-
language adapter for multisensory feature alignment. For
audio-language alignment, we use AudioSet [26] and Au-



dioCaps [34]. For impact sound, tactile, and thermal data,
we use ChatGPT to generate a one-sentence caption de-
scribing the material and the alignment between each sensor
modality and language. We freeze the weight of the image
encoder and the LLM for faster convergence and mainte-
nance of language reasoning abilities.

Instruction tuning with Multisensory Universe In the
second stage, we tune LLaVA with our multisensory
dataset. Our training loss consists of two parts. The first one
is the LLM loss which is the same as the original LLaVA
model. We add one more loss that forces the model to se-
lect the right object to attend to. Specifically, we calculate
the attention between the last hidden state of the LLM of
the SELECT token, and each abstracted object feature. The
feature goes through a Sigmoid layer, and is optimized with
a binary cross entropy (BCE) loss. We unfreeze the whole
model for the training of this stage. We use FSDP on 128
V100 GPUS for efficient training.

Inference At the inference time, our MultiPLY first takes
the task prompt and abstracted scene representation as in-
puts and generates subsequent tokens. Once an action token
is generated, an embodied agent is instructed to take the ac-
tion in Habitat-sim [47] and interact with the environment.
The observation outcome of the agent is sent back to the
LLM as inputs via state tokens. The LLM further generates
next tokens based on the current state inputs.

5. Experiments

After training on our collected Multisensory Universe, we
perform an evaluation in the simulator, where an agent
could actually interact with the environment when the ac-
tion tokens are generated by MultiPLY. Then, the LLM
waits for the agent to complete the actions and send back
the observations via state tokens to generate the next token.
We provide four experimental settings: object retrieval, tool
use, multisensory captioning, and task decomposition, and
provide detailed task descriptions, baselines, and analysis
for each task. We ensure that no scenes and objects in the
Multisensory Universe appear in the evaluation setup. Due
to space limits, we attach more ablative studies in the Sup-
plementary Material, where we experiment with each possi-
ble combination of sensory inputs from different modalities,
with or without interaction with the environment.

5.1. Object Retrieval

Task Decription We devise the object retrieval task where
several similar objects are present in the 3D scene, and the
agent needs to use multiple sensor data to retrieve the cor-
rect object. For example, the task input could be like “re-
trieve the soft paper cup with hot water”, while there could
be distracting objects like “hard paper cup with hot water”,
“soft paper cup with hot water”, “soft plastic bowl with
hot water” or “soft paper bowl with hot water”, etc. The

scene setup is different from the Multisensory Universe as
we place more distracting objects to retrieve from (while
in Multisensory Universe most scenes have two similar ob-
jects), and we include different sensor attribute combina-
tions from Multisensory Universe objects. For example, in
the training set, we saw a ceramic cup and a paper bowl,
and in the evaluation, we query about a paper cup.

Baselines We include a set of cross-modality retrieval mod-
els as our baselines, which return the similarity between
aligned sensor embeddings. They can be categorized into
1) single-sensor language models, such as CLIP and CLAP.
2) 2D multisensory models, for which the embeddings of
other modalities have been mapped to the same as 2D im-
ages like ImageBind [28]. 3) 3D multisensory models, in
which the embeddings of object point clouds are binded to
other modalities, like PointBind [30]. We first explore the
environment and use concept graphs to represent the scene
as a set of object features like MultiPLY, where the object
features are visual embeddings from these retrieval mod-
els. The select action could be achieved by calculating the
similarity between the object embedding and the language
embedding, and the object with the highest score will be
retrieved. As these models cannot interact with the envi-
ronment to get the tactile, impact sound, and temperature
data, we refine three setups for the baselines: 1) No interac-
tion, and retrieve the object with the highest retrieval score.
(For CLAP we assume that we have impact sounds of all
objects) 2) Interact with the environment using oracle inter-
active actions. That is, we first retrieve the objects of inter-
est via visual-language similarity, then we manually control
the agent to interact with the objects to get impact sound,
tactile and temperature information. The embeddings of all
sensors are averaged and calculate the similarities with the
language query, and the object with the highest score is re-
trieved. Since the action tokens are pre-defined and not gen-
erated, this oracle setting makes it easier to compete with
MultiPLY. 3) Finetuned with a modified version of our Mul-
tisensory Universe tailored for multi-modal alignment and
retrieval. Specifically, we first align the sensor data of the
objects in Multisensory Universe to visual modality (like in
ImageBind and PointBind), then we further align them with
the modified language data in Multisensory Universe.

For LLM-based methods, we include Pointbind-LLM,
which uses the pointbind representations and performs in-
struction tuning with LLaMA [54]. We also experiment
with MultiPLY-2D, a 2D variant of our model, where we
replace 3D features with 2D single-view features.

Analysis Table 1 shows the object retrieval results. We
could come to several conclusions. First, models that take
multiple sensory inputs outperform models that handle sin-
gle modality inputs by a large margin. CLIP, CLAP, as well
as models that use the initial visual embeddings have a very
low score in object retrieval, emphasizing the importance



Model Retrieval Accuracy
ConceptGraph+CLAP 14.5
ConceptGraph+CLIP 18.7
ConceptGraph+ImageBind 20.3
ConceptGraph+ImageBind-I 24.7
ConceptGraph+ImageBind-I (Finetuned) 36.7
MultiPLY-2D 44.6
ConceptGraph+PointBind 19.5
ConceptGraph+PointBind-I 22.7
ConceptGraph+PointBind-I (Finetuned) 40.4
PointBind-LLM (Finetuned) \ 48.9
MultiPLY \ 56.7

Table 1. Experimental Results of Object Retrieval. -I denotes
the models utilize oracle action tokens to interact with the environ-
ment. (Finetuned) means finetuned on Multisensory Universe.

of integrating multisensory data for reasoning. Second, 3D-
based models surpass 2D models, mainly because single-
view images sometimes fail to provide enough information
to reason about the objects due to view inconsistency and
occlusion. Third, LLMs outperform similarity-based re-
trieval models. The reason could be that retrieval models
fuse the multisensory embeddings into a whole, and do not
disentangle the representation, or interact with the different
sensors step by step. In general, our MultiPLY outperforms
the baseline models a lot. That’s probably because one
weakness of the binding-based methods is that they bind
everything to the visual modality, while one visual attribute
could be mapped to several attributes from another modal-
ity (e.g., from the appearance of a cup, we could not tell
whether it’s made of ceramic or plastic, unable to align to
different impact sounds for alignment). Our MultiPLY re-
solves ambiguity by interacting with and reasoning about
the different sensor data individually.

5.2. Tool Use

Task Description In an embodied environment, multisen-
sory data are crucial for finding an appropriate tool to solve
a problem. One example is that when we are injured, we
need to retrieve warm compresses or ice packs depending
on the injured parts and how long we’ve been injured. We
could also find substitute tools if the common ones are not
present. For example, we could use a steel spoon to replace
the can opener, but we can’t use a plastic spoon. Similar to
the object retrieval task, we place some objects from differ-
ent categories, and also objects from the same categories
but with different materials/haptic/thermal information in
the environment. We use one sentence to describe the cur-
rent situation and the goal to be done, and ask the agent to
retrieve the correct tool for dealing with the situation.

Baselines We use the same baselines as the object retrieval
experiment for tool retrieval. For LLM-based methods, we

also need to give reasons when we select the tools.
Analysis Table 2 shows the results of tool use. We could
see that the binding-based methods have a very poor perfor-
mance in tool use. It might be because that they treat the
object sensory data as a whole, unable to disentangle the
individual sensory information such as material from the
representation, let alone reasoning about how this property
could be utilized as a tool, and how to analyze and deduce
the functionality of an object when the multisensory infor-
mation is integrated.

Model ‘ Accuracy
ConceptGraph+CLIP | 101
ConceptGraph+ImageBind 7.4
ConceptGraph+ImageBind-I 8.2
ConceptGraph+ImageBind-I (Finetuned) 16.4
MultiPLY-2D 36.3
ConceptGraph+PointBind 11.5
ConceptGraph+PointBind-I 13.2
ConceptGraph+PointBind-I (Finetuned) 18.7
PointBind-LLM (Finetuned) | 321
MultiPLY | 416

Table 2. Experimental Results of Tool Use.

5.3. Multisensory Captioning

Task Description Different from traditional single-
modality captioning tasks, multisensory captioning requires
the model to describe the object in all senses. By giving se-
mantic information about an object or ambient sound emit-
ted by the object, the agent must first navigate to the object
to interact with it and describe it.

Baselines For baseline models, we include LLaVA, which
takes a holistic scene image as input and generates a cap-
tion about the queried object. 3D-LLM takes the scene
point cloud as inputs, and uses dense captioning to de-
scribe the object. Both methods only use visual informa-
tion. PointBind-LLM first retrieves the objects by modality
alignment, and then interacts with the objects and integrates
multisensory information to describe the queried object.

‘ BLEU1 BLEU4 METEOR
LLaVA 9.5 0.6 7.1
LLaVA (Finetuned) 28.6 10.1 104
3D-LLM 14.4 1.5 9.5
3D-LLM (Finetuned) 31.2 12.1 12.4
PointBind-LLM 16.5 2.3 7.7
PointBind-LLM (Finetuned) 36.7 14.5 15.1
MultiPLY | 489 20.1 24.2

Table 3. Experimental Results of Multisensory Captioning.

Analysis Table 3 shows the result. From the table, we
could see that 3D-based LLMs overall outshine 2D VLMs.
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Figure 4. Qualitative Examples of our MultiPLY. MultiPLY could interact with the objects in the embodied environments and gather

multisensory information.

LLaVA and 3D-LLM take the holistic representation as in-
puts, and thus fail to compete with models that could inter-
act with the models to switch between representations. Mul-
tiPLY outshines Pointbind-LLM, probably because Point-
Bind binds the representations of different modalities, mak-
ing it difficult to disentangle the senses.

5.4. Task Decomposition

Task Definition Task decomposition focuses on decompos-
ing a high-level task into smaller actions. In our setting, we
focus on retrieving different things to prepare for a task. For
example, to prepare for dinner, we need to first detect avail-
able foods in the kitchen, and gauge its temperature. If it’s
cold, we need to heat it in the microwave so we also need
to retrieve a ceramic or glass container which is microwave-
safe. We also need to prepare the utensils of the appropriate
materials. In our setting, we place several possible choice
combinations in the environment, we also place object com-
binations unseen from the Multisensory Universe. As long
as the agent retrieves one of the correct combinations, the
task is marked as success.

Baselines We include LLaVA, a minimal 2D image version
of our model. We output an image of the scene and ask the
model to decompose the tasks into actions. We also utilize
3D-LLM since it’s capable of performing task decomposi-
tion. In the original paper, we take the whole point cloud
as input and generate low-level actions. Note that there is a
domain gap between the task decomposition data 3D-LLM
was trained on and our setting, which yields almost zero
success rates of 3D-LLM without finetuning. Therefore, we
finetune all models as baselines. For each baseline we have
two variants: 1) wo Interaction: generate all actions all at

once, and execute the actions sequentially in the environ-
ment; 2) w Interaction: generate an action one at a time,
take the action feedback and generate the next action.

success rate

LLaVA wo Interaction 4.0
LLaVA w Interaction 14.5
3D-LLM wo Interaction 8.7
3D-LLM w Interaction 22.4
MultiPLY 30.2

Table 4. Experimental Results of Multisensory Captioning.

Analysis Table 4 shows the task decomposition results.
From the table, we observe that models without interaction
have very poor results, probably because vision-language
models have hallucination to a great extent. For example,
the models could generate “retrieve a bread” when there’s
no bread in the scene. MultiPLY outperforms the baseline
models by a large margin. One reason could be that Mul-
tiPLY leverages multisensory information while the other
two leverage visual information. The other reason might be
that baseline models take the whole scene as inputs, thus
could not attend to the nuanced object in the scene.

5.5. Qualitative Examples

Qualitative Examples are shown in Figure 4, demonstrating
the power of MultiPLY to interact with objects in the em-
bodied environments and gather multisensory information.
More examples can be found in the supplementary mate-
rials.



6. Conclusion

In this paper, we propose MultiPLY, a multisensory LLM
that could incorporate multisensory interactive data into
large language models. We introduce Multisensory Uni-
verse, a dataset comprising 500k multisensory data col-
lected by an agent actively exploring and interacting with

an environment.

One limitation of our model is that cur-

rently MultiPLY does not involve detailed navigation and
control policy, but utilizes pre-defined policies for carrying
out the actions. We think that such aspects are orthogonal to
our study, and could be explored and seamlessly integrated
into our framework in the future.
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A. Dataset
A.l. More details on Scene Construction

In figure 5, we show how we add new objects to the HM3D scenes. Specifically, ChatGPT is asked to generate: 1) object
bounding boxes; 2) object material and material properties; 3) temperatures.

/message s=[{“role”: “system” , “content”: “You're an Al assistant that can analyze a 3D scene.” \
"A room is given with its bounding box in format '<room>: [[x min, y min, z min],[x max, y max, z max]]". "\

"All object instances in this 3D scene are given with their bounding boxes in format 'obj_name: [x min, y min, z min],[x max, y
max, z max]]". \n" \

"You need to select 1-10 objects possible to appear in this 3D scene from the candidate objects. " \

"You need to specify whether the object is rigid, elastic, plastic, cloth or liquid. If the object is elastic, you could specify whether
the object is hard or soft”
"You need to specify the material of the object: plastic, ceramic, steel, polycarbonate and so on"

"You could select some ambiguous objects (like two objects of the same category, one of them is wood and one of them is
ceramic), so interesting tasks could be proposed about the objects. " \

”You could specify whether it's hot or cold. you could add the same object, one is hot and one is cold.\n" \

"You also need to output a proper bounding box to place the selected object with correct size and location. You need to ensure that
there's no collision between the existing objects and added objects. They also don't collide with each other. You need to ensure that the
bounding box makes sense so the object does not float in the air. Give Reason why you select the objects. \n" \””

"Remember, Do not copy coordinates from input data." \
"The coordinate of the object should be inside the room!" \
"You DON'T choose objects that are already in the room. (for example, if there's a chair, you don't want a chair again!)”

for sample in fewshot samples:
messages.append ({“role”: “user”, “content”: ‘\n’.join (sample[‘scene’])})

messages.append ({“role”: “assistant”, “content”: sample[ ‘response’]})

messages.append ({“role”: “user”, “content”: ‘\n’.join (new scene) })

\ /

Figure 5. Prompts for adding objects to the scene

A.2. More details on Sensor Data Acquisition

In this section, we elaborate on how we get the sensor data of the objects in details.

A.2.1 Tactile

DiffTactile [2] requires us to provide a set of parameters for tactile simulation of different objects. In addition to telling to
the model whether we are inputting a rigid, elastic, or elasto-plastic object, we also need to specify the parameters such as
Young’s modulus, Poisson’s ratio, Yield Strength and so on.

As in the main paper, when ChatGPT adds objects to the scene, it also specifies what kinds of objects (e.g, rigid, elastic,
plastic) and the softness / deformability (in the description of language) of each object. In order to get the parameters required
by DiffTactile, we prompt ChatGPT with the type and the softness / deformability description, as well as detailed definition
of each parameter, and the possible values of the parameters of several few-shot examples. ChatGPT is asked to return the
detailed parameter combinations of the given objects. For example, a soft bread corresponds to a smaller young’s modulus,
while a harder one corresponds to a larger young’s modulus. We add the prompt in getting the parameters in Figure 6.

We input the object into DiffTactile, normalize the shape of the gripper according to the object. We record the 2D initial
position and final position of the markers in the gripper. And we turn the tactile readings into a 2D image, by drawing an
arrowed line from the initial position to the final position. We show some examples of tactile images in Figure 7. We sample
16 touching positions of each object. In training and evaluation, we randomly return one image of the object.

A.2.2 Impact Sound

ObjectFolder [20] stores the multi-modal information all in implicit fields. That is, by inputting a striking location to the
sound implicit field of an object, we could get the impact sound of striking the object at the specific location. For each object,
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&es sages=[{“role”: “system” , “content”: “You are a chemist and material analyzer that could analyze the materials of \
any objects. Given the object \"%s\", please define the following things:\n \
: Young's Modulus: Provide a value for this specific object\n \

The definition of Young's Modulus: quantifies the relationship between tensile or compressive stress ¢ \sigma (force per unit area)
and axial strain € \varepsilon (proportional deformation) in the linear elastic region of a material. It's equal to exerted force / deformation
length under the force. The lowest values of Young's modulus are for materials like natural rubber, at 0.01-0.1 GPa, whereas the highest
values are typically for carbon nanotube materials (up to 1,000 GPa) \

Poisson Ratio: Please choose a value between 0.0 and 0.5 for this specific object\n \

The definition of Poissons ratio: v \nu (nu) is a measure of the Poisson effect, the deformation (expansion or contraction) of a
material in directions perpendicular to the specific direction of loading. The value of Poisson's ratio is the negative of the ratio of transverse
strain to axial strain. For small values of these changes, v \nu is the amount of transversal elongation divided by the amount of axial
compression. Most materials have Poisson's ratio values ranging between 0.0 and 0.5. For soft materials, such as rubber, where the bulk
modulus is much higher than the shear modulus, Poisson's ratio is near 0.5. For open-cell polymer foams, Poisson's ratio is near zero, since
the cells tend to collapse in compression. Many typical solids have Poisson's ratios in the range of 0.2-0.3.\n \

Yield Strength: Provide a value for this specific object\n \

The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material
begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it
represents the upper limit to forces that can be applied without producing permanent deformation. The yield strength of steel ranges from as
low as 220 MPa (hot-rolled A36 steel) to as high as 1570 MPa (4140 alloys, oil-quenched and tempered)\n"” } ]

for sample in fewshot samples:
messages.append ({“role”: “user”, “content”: ‘\n’.join (sample[‘object’])})
messages.append ({“role”: “assistant”, “content”: sample[‘response’]})

kmessages.append({“role”: “user”, “content”: ‘\n’.join(new_object)}) j

Figure 6. Prompts for getting the material parameters for the objects
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Figure 7. Examples of tactile images.

we randomly sample 10 locations in the mesh points to get the impact sound. In training and evaluation, we randomly return
one impact sound of the object.

A.2.3 Ambient Sound

AudioSet is paired with objects to represent ambient sound. The AudioSet ontology is organized in a hierarchy structure.
From the root node to the leaf node, the description granularity becomes finer (e.g., Music - Musical instrument - Keyboard
- Piano - Electric piano). Each ontology entry is attached with a description (e.g., “Glass: sounds associated with the non-
crystalline amorphous solid that is often transparent and has widespread practical, technological, and decorative uses”). Each
audio is labeled with multiple ontology entries tracing from the child node to the root node (e.g., the sound of the piano will
be labeled with “Piano”, “Keyboard”, “Musical Instrument”, and “Music”, but without “Electric piano” since this piano is
not electric). We prompt ChatGPT to match each ontology entry with object categories (Figure 8).

A.2.4 Temperature

We add the prompt in getting the temperature in Figure 9.
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System:

You are an Al audio assistant that can analyze descriptions and tags of sounds. The input has three fields. 'tags' are some labels about the
sound. 'description’ is the text description of the sound. ‘objects' are a list of candidate objects. You need to infer what kind of objects can
make the sound based on 'tags' and ‘descriptions’. You need to select ALL objects that are possible to make this sound from the 'objects' list.
Remember, the object MUST be found in a normal INDOOR environment. Do not include objects that do not exist in the 'objects' list.
Return [] if no object satisfies the condition.

Example Questions:

tags=['Frying (food)', 'Domestic sounds, home sounds', ‘Sounds of things'],

description="The sound of cooking food in oil or another fat.",

objects=[poncho, pool_table, pop_(soda), popsicle, postbox_(public), pan_(for_cooking), postcard, poster, pot, potato, potholder]

Example Answers:
\[pot, pan_(for_cooking)] Y,

Figure 8. Prompts to match AudioSet with Objects

messages=[{“role”: “system” , “content”: “You areatemperature analyzer that can analyze a 3D scene.

You need to assign a temperature (celsius) for the input object. The default room temperature is 26 degree celsius. \

Pay attention to the hot and cold label of the objects. For example, cup _hot can be as hot as 85 celsius, and cup_cold can be as
cold as 5 celsius.” } ]

for sample in fewshot samples:
messages.append ({“role”: “user”, “content”: ‘\n’.join(sample[‘object’])})

messages.append ({“role”: “assistant”, “content”: sample] ‘response’]})

messages.append ({“role”: “user”, “content”: ‘\n’.join(new object)})

- J

Figure 9. Prompts on generating temperature for each object

A.3. More details on Task Construction

In Figure 10, we illustrate the prompts for generating the language task data for Multisensory-Universe. Specifically, the ac-
tions could return the expected observation in the form of language (e.g., tactile map of and object when touching). We insert
that into the state tokens for placeholder, and after the agent has executed the actions in the space and gets the observations,
we append the observations back to the state tokens.

Ablative Model Acc
MultiPLY Vision 21.0
MultiPLY Audio 13.2
MultiPLY Tactile 10.5
MultiPLY Temperature 11.2
MultiPLY Vision, Audio 31.8
MultiPLY Vision, Tactile 24.3
MultiPLY Vision, Temperature 25.7
MultiPLY Audio, Tactile 20.6
MultiPLY Audio, Temperature 23.4
MultiPLY Tactile, Temperature 18.9
MultiPLY Vision, Audio, Tactile 453
MultiPLY Vision, Tactile, Temperature | 41.4
MultiPLY Vision, Audio, Temperature | 45.3
MultiPLY Audio, Tactile, Temperature | 37.7
MultiPLY 56.7

Table 5. Ablative Study of MultiPLY
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messages=[{“role”: “system” , “content”: “You are an Al assistant / task generator in the room. All object instances in\
this 3D scene are given, along with their bounding boxes and ids." \
"The bounding boxes are represented by a 3D coordinate (X, y, z) with units of meters. " \
“If the object emits a sound, it will have a ‘emit’ label." \
”If the object could be hit, it will have a hit’ label.” \
”You could use the actions to interact with the environment. They are:”
“<SELECT>: which returns the id of the object”
“<NAVIGATE>: which navigates to the object selected”
“<OBSERVE>: which returns the visual details of the object”
“<TOUCH>: which returns tactile and temperature information of the object”
”<HIT>: which returns the impact sound of the object”
”<PICK UP>: pick up the object”
“<PUT DOWN>: put down the object”
“<LOOK AROUND>: retrieves objects ids and categories near the object”

Using the provided object instance information and selected objects, you need to generate a task that could be performed in the scene.
Exempler tasks include captioning, question answering, dialogue, manipulation, task decomposition, rearrangement. For example:
”Captioning: you need to choose one object, describing its information of all modalities, and also its relationships to the other
objects. ”
“Question Answering: you need to generate several question-answering pairs about the 3D scene. The questions must be
answered by exploring the room using the above actions.”
“Manipulation: You need to generate some manipulation tasks which you use the actions to manipulate the objects”
“Task Decomposition: You need to design a task that could be performed in this room and decompose it into 3-10 sub-tasks.
The task must be completed using the actions.”
“Rearrangement: If the objects are in a weird position, move them to a suitable location using the actions.”
You also need to decompose the description process by several actions to interact with the environment using the tokens above. You need
to also specify what’s the observation / feedback you could get by executing the action. For example <SELECT> -> returns apple(65),
where 65 is the object id, or touch -> returns tactile map and temperature of apple(65). You need to output your reasoning processes like “I
need to touch it ” or conclusions like “it’s hot”
for sample in fewshot samples:
messages.append ({“role”: “user”, “content”: ‘\n’.join(sample[‘scene’])})
messages.append ({“"role”: “assistant”, “content”: sample[‘response’]})

messages.append ({“role”: “user”, “content”: ‘\n’.join (new_scene) })

\ /

Figure 10. Prompts for task construction

B. Experiments
B.1. Experimental Details

We tune the model based on the 1lava-v1.5-7b checkpoint of the LLaVA model. We use Adam optimizer with learning rate of
le-6. We train the model on 4¥*132 V100s. We use a batch size of 2112. The training of multi-modal adapters takes 2 hours,
while the whole finetuning takes less day 1 day to complete.

We use the mm projector of the original LLaVA for adapting scene representations and object point clouds to the LLM.
The sound, tactile and temperature adapters are all one linear layer with input size 1024 and output size 1024.

We use the default CLIP vision encoder of LLaVA to encode all objects, point clouds, tactile and temperature images.
Specifically, for objects, we use segment anything [35] to get the objects out of 2D objects, mask out other objects and
background, and crop the image to the size of the object, and use CLIP encoder to encode the object. We follow ConceptGraph
[29] to merge the objects from 2D to 3D. For scene construction, each object has one CLIP feature. For object details (point
cloud), we project the 2D pixels of the objects to 3D, and get the point clouds of the objects.

B.2. Ablative Studies

In Table 5, we show additional experimental results where we explore MultiPLY with single, double or triple modalities.
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B.3. More Qualitative Examples

<select><touch> w
The first one is

<select><touch> w
The second one

The second one

* ISUC \ hard and spiky. is soft. is better for the
| see two knives - ‘ > kid.
on the table.
<hit> <hit>
" \It’s made of steel. It's made of plastic.

Give me a knife
for the kid.

I'll bring it
for you.
‘)

<select> <touch> <select> <touch>

The first one is hot. & — | This one is cold. & —
It will worsen your It can ease your

situation.

| see some pads 7~ ‘ —_
on the sofa.

Ohno! |

injured my
knee and it’s
swelling.

ou need some’
cold stuff to

compress the
injury.

Get mea I'll bring you
towel. [5) <select> <touch> —p | <select> <touch> w —_ the second one
: This one is soft w & This one is soft &
but cold. and warm.

There are two
towels. Which
one do you want?,

Get me a soft
and warm one.

Figure 11. More qualitative examples of MultiPLY
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