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Abstract

We address a practical yet challenging problem of training robot agents to navigate
in an environment following a path described by some language instructions. The
instructions often contain descriptions of objects in the environment. To achieve
accurate and efficient navigation, it is critical to build a map that accurately repre-
sents both spatial location and the semantic information of the environment objects.
However, enabling a robot to build a map that well represents the environment is ex-
tremely challenging as the environment often involves diverse objects with various
attributes. In this paper, we propose a multi-granularity map, which contains both
object fine-grained details (e.g., color, texture) and semantic classes, to represent
objects more comprehensively. Moreover, we propose a weakly-supervised auxil-
iary task, which requires the agent to localize instruction-relevant objects on the
map. Through this task, the agent not only learns to localize the instruction-relevant
objects for navigation but also is encouraged to learn a better map representation
that reveals object information. We then feed the learned map and instruction to
a waypoint predictor to determine the next navigation goal. Experimental results
show our method outperforms the state-of-the-art by 4.0% and 4.6% w.r.t. success
rate both in seen and unseen environments, respectively on VLN-CE dataset. Code
is available at https://github.com/PeihaoChen/WS-MGMap.

1 Introduction

Developing a robot that is able to cooperate with humans is one of the goals for embodied artificial
intelligence. An important ability for such a robot is to understand human instructions (e.g., “stop
between the gray sofa and wooden table”) and navigate to the corresponding location. Toward this
goal, Anderson et al. [1] propose a vision-and-language navigation (VLN) task, which requires an
agent to follow human language instructions to navigate in unseen environments. In this paper, we
focus on its variant task VLN-CE [34], where the agent navigates in a continuous environment. The
agent could only perform low-level actions and perceive RGB-D with a limited field of view.

Current dominant methods for this task are designed in an end-to-end manner [28, 34, 42]. They
perceive the environment implicitly from raw RGB-D images and predict a sequence of actions using
a recurrent model. These methods attempt to learn mapping, instruction-vision correspondence, and
path planning implicitly, which increases the learning difficulty. To reduce the learning difficulty,
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Figure 1: Existing semantic map (a) can only represent a part of environment object classes without
attribute details. Our multi-granularity map (b) contains extra fine-grained environment details (e.g.,
texture, color) and learns to represent diverse objects with detailed attributes through a weakly-
supervised object localization task.

modular map-based approaches [6, 20, 29] equip the embodied agent with a semantic map to perceive
the environment. This map is built by projecting RGB image segmentation results to an egocentric
top-down map (shown in Figure 1 (a)), and reveals the location and semantic class of a part of the
environment objects.

However, this map is hard to represent all object classes (e.g., sofa is not represented in Figure 1
(a)). More critically, it can not represent the attributes of objects (e.g., shape, color, texture and
material), which are critical for localizing an object. As a result, it provides insufficient information
to discriminate the “long wooden dining table” from two table instances shown in Figure 1 (a). We
find that such ambiguity cases appear frequently in an indoor environment. Detailed statistical data
and visualization examples are shown in Appendix.

In this paper, we propose to learn a map that represents the semantics and attributes of diverse objects
in a weakly-supervised manner. We achieve this goal in two steps. First, we augment the existing
semantic map to a multi-granularity map as shown in Figure 1 (b). This map contains different
granularity information, namely high-level object semantics recognized by a segmentation model,
and low-level object fine-grained details. To get the low-level details, we follow existing works [4]
to project high-dimensional segmentation model latent features to a top-down map. These latent
features have proven to contain rich object details such as color, texture, and shape [30, 55].

Second, to make the map better represent instruction objects using the multi-granularity features
described above, we propose an instruction-relevant object localization auxiliary task as shown in
Figure 1 (b). Specifically, we feed the map representation and instruction objects to a localizer
to predict the location of these objects. Instead of manually annotating the object location on
a map as localization ground-truth, we automatically generate a coarse localization ground-truth
from instruction-path paired data, considering map regions that are close to the instruction path as
coarse ground-truth. From this task, agents learn to localize instruction-relevant objects for finding
an instruction-relevant path. More critically, to localize instruction objects, the map encoder is
encouraged to reason a map representation that reveals the precise semantics of each map region.

We then feed the learned map and the instruction to a waypoint predictor to determine the next
navigation goal. An existing off-the-shelf local policy [50] is used to determine a low-level action (e.g.,
go forward, turn left or right) to go for the navigation goal. We name our method as weakly-supervised
multi-granularity map (WS-MGMap) for VLN. Experimental results on VLN-CE benchmark dataset
show our proposed method outperforms state-of-the-art methods.

To sum up, our main contributions are as follows: 1) We construct a multi-granularity map to
represent both fine-grained details and abstract semantics information of the environment. To our
best knowledge, it is the first time to introduce multi-granularity knowledge in a map format for VLN
task. 2) We propose a weakly-supervised object localization auxiliary task, from which agents learn
to leverage multi-granularity information to infer a discriminative map representation without the
need for manual map annotation. 3) With WS-MGMap, our agent robustly localizes objects that are
incorrectly recognized by segmentation models. On VLN-CE [34], our method improves navigation
success rate by 4.0% and 4.6% in seen and unseen environments, respectively.
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2 Related Works

Vision-and-language navigation. VLN task [2] has drawn significant attention in embodied AI
domain. Early works focus on data augmentation methods [14, 47], auxiliary tasks [37, 49, 57]
and pre-training methods [22, 24, 38] on the discrete environments in which the agents can only
perceive from a sparse set of points. However, these methods can not perform well when the agent
navigates in continuous 3D environments [27, 16]. To address this issue, Krantz et al. [34] exploits
Habitat simulator [45] to convert discrete trajectory paths to continuous trajectories and proposes
a continuous VLN setting. Under these settings, Krantz et al. [34] and Raychaudhuri et al. [42]
propose the end-to-end method in which the agent takes a representation of the visual observation
and instructions as input at each time step to predict an action. Another line of works [20, 33] tackles
the VLN problems by leveraging the language-conditioned waypoint. Chen et al. [8], Georgakis
et al. [20] and Irshad et al. [29] build a structured semantic top-down map, which is more relevant
to our work. However, those map-based methods are limited in representing all object classes or
the attributes of objects, which prevents the agent from effectively grounding instructions in maps.
In contrast to these works, our method learns a map that represents the semantics and attributes of
diverse objects in a weakly-supervised manner.

Map representation for navigation. Perceiving the environment through a map representation
is helpful for navigation tasks. Previous works propose different methods for building a map, each
of them focusing on representing different information on the map. For example, occupancy map
indicates whether a point is occupied and provides location information for point-goal navigation
and exploration [31, 32, 41, 9, 18, 17, 15]. Topological maps encode the relationship information
among different nodes in the environment and have been explored to tackle different navigation
tasks [3, 7, 8, 39]. Semantic maps represent the semantic information of the environment and has
been successfully applied in object-goal navigation [6, 10, 53]. Concurrent works [20, 29] attempt
to leverage semantic map for VLN task. Existing works [26, 4, 23, 11, 21] try to generate a deep
feature map by projecting high-dimensional features encoded from neural network to a top-down
map, which is used for localizing robot [26], predicting semantic map [4], navigating to a few target
objects [23, 21], and 3D reconstructing objects [11]. However, as compared to object-goal navigation,
the instructions in VLN involve more object information. It is challenging to ground rich object
information in the map described above individually due to their respective limitations. Unlike these
maps, we propose a multi-granularity map that contains complementary granularity information for
representing the environment more comprehensively.

Weakly-supervised learning for object localization. Weakly-supervised object localization is a
challenging task that requires learning to localize objects given solely category information in both
image[58, 36, 56, 54, 51] and video[35, 52]. CAM[56, 54, 51] has been widely used in weakly-
supervised object localization by learning a heat map representing the potential of object location. In
contrast to this literature, we aim to utilize the weakly-supervised object localization task to learn
discriminative map representation that provides environment information for VLN by localizing
instruction-relevant objects.

3 Vision-and-Language Navigation using Multi-Granularity Map

3.1 Problem formulation

We consider the vision-and-language navigation task in a continuous environment [34] (VLN-CE),
where an agent is required to follow a specific path described by the natural language instruction
I . Compared with the original VLN task, in VLN-CE settings, agents can not access to predefined
navigable graph, so the agent is required to perform navigation through a sequence of low-level
actions a ∈ A = {FORWARD, TURN-LEFT, TURN-RIGHT and STOP}. We equip the agent with an
RGB-D camera with a limited field of view, capturing a 224× 224 RGB image R and depth image D
at each time step. Although some current works use predefined navigable graph [8], continuous-space
actions [33] and panoramic cameras [14, 27] to improve the performance, we strictly keep the same
settings with VLN-CE [34], which are closer to reality and more challenging.

Existing VLN methods [33, 34, 42] attempt to perceive the environment implicitly from RGB-
D observation, which often requires a large number of training data. In contrast, humans will
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Figure 2: General scheme of WS-MGMap for VLN task. We assemble both fine-grained details and
semantic information about environments to build a multi-granularity map. Agents learn to leverage
such information for representing diverse objects through a weakly-supervised object localization
task. The learned map and instruction are then fed to a waypoint navigator for deciding actions.

build a map-like environment representation explicitly to provide necessary information for VLN.
Equipping an agent with the mapping ability like humans is challenging because it is hard to
represent diverse environment objects and their attributes in a map. In this paper, we solve this
challenge from two aspects: 1) we augment a semantic map with extra fine-grained environment
details (e.g., texture, color), which are extracted from latent features of a pre-trained segmentation
model, to build a multi-granularity map. These different granularity features provide necessary
information for representing diverse objects and attributes. 2) To make the multi-granularity map
representation more discriminative, we propose a weakly-supervised localization auxiliary task for
learning correspondence between map representation and instruction objects. With the learned
multi-granularity map, we feed it and the instruction to a waypoint navigator to decide the next
navigation action. The general scheme is shown in Figure 2.

3.2 Perceiving environment via multi-granularity map

To better represent environment objects on a map, we propose to leverage both fine-grained features
and semantic features about objects for building a multi-granularity map. We next introduce how to
capture these two types of features for map representation.

Fine-grained map. To capture fine-grained environment details, we feed RGB images captured at
each time step to a pre-trained segmentation model (a U-Net [43] in our case). Previous network
interpretability works [30, 55] show that latent features from different layers of this model contain
different types of fine-grained details of objects, i.e., low-level features represent color and texture
while high-level features represent object parts. Based on this observation, we use these latent
features to represent environment details and project the latent features to an egocentric top-down
map [4]. We name the projected map as fine-grained map Mf ∈ Rm×m×cf , where m × m is
map size and cf = 64 is the number of channels of the projected latent features. Each map pixel
represents 12cm× 12cm space of environments. We choose to project latent features from the last
layer of U-Net, which contains both low-level and high-level features because of the skip connection
mechanism in U-Net. We also evaluate the effect of other layer features in experiments.

Global semantic map. The fine-grained map aggregates environment details from RGB images
which are captured along the navigation path. Because camera has a limited field of view, the
fine-grained map does not contain environmental information that has not been observed. More
importantly, requiring agents to recognize all objects, including some common-seen objects, from
fine-grained details increases learning difficulty. Thus, to hallucinate environments beyond the field
of view and to get semantic information about common-seen objects, we feed the fine-grained map to
a semantic hallucination module to predict a global semantic map Ms ∈ Rm×m×cs , where each pixel
indicates whether a particular object out of cs = 27 object categories locates in the corresponding
space. The cs object categories are listed in Appendix. The hallucination module consists of three
convolution layers with batch norm and ReLU activations, followed by a U-Net which has two
encoder and two decoder convolutional blocks with skip connections. We get the ground-truth global
semantic map M̄s from the available 3D semantic information in Matterport3D following existing
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methods [19, 20]. A pixel-wise semantic loss ls is defined as follows:

ls =
∑
i

CrossEntropy(Ms
i , M̄

s
i ). (1)

Multi-granularity map. We merge information from both the fine-grained map and predicted
semantic map using a map encoder. Specifically, these two maps are first processed by a convolution
layer, respectively. The concatenation of two processed maps is fed to a convolution layer for
producing a multi-granularity map M ∈ Rm×m×c, where c is the number of map channels.

3.3 Weakly-supervised map representation learning via object localization task

To learn the correspondence between multi-granularity map representation and diverse objects, we
propose a weakly-supervised instruction-relevant object localization auxiliary task. To finish this
task, the agent is required to reason precisely about semantics information for each region of map
representation, which makes the map representation more significant.

Formulation of weakly-supervised auxiliary task. To localize the instruction object on a map,
we feed the instruction and multi-granularity map to an object localization module to predict an
egocentric grid map P̂ ∈ Rm×m which indicates a 2D distribution of potential locations of instruction-
relevant objects. Because we do not know the exact location of these instruction objects, we use
the instruction-relevant path as guidance to generate a coarse ground-truth egocentric grid map
P ∈ Rm×m. The principle for generating coarse ground-truth is that the regions closer to the path
have a higher probability of containing instruction-relevant objects. Specifically, we first calculate
euclidean distance dk from the k-th map region to the path. A normalized distance map is defined
as P′ = { dmax−dk

dmax−dmin
}m×m
k=1 , where dmax and dmin are the maximum and minimum distances among

m×m regions, respectively. For a region traversed by the path, dk = dmin = 0 and P′
k = 1; for the

farthest region, dk = dmax and P′
k = 0. The coarse ground-truth grid map P is the softmax across

all grids in the distance map, i.e., P = Softmax(P′). An object localization loss lo is defined as KL
divergence between predicted and coarse ground-truth distributions, i.e.,

lo =
∑
i,j

Pi,j log
Pi,j

P̂i,j

. (2)

By minimizing the above loss function, the agent is encouraged to learn a better map representation
for localizing instruction objects.

Instruction-relevant object localization module. The localization module contains two main
components, namely a state encoder and a state-instruction attention Att(·). The state encoder
is a gated recurrent unit (GRU) [12] and attention module is a scaled dot-product attention [48].
Specifically, we first track visual history, which consists of RGB image R, depth image D, and
multi-granularity map M, using the state encoder to encode current episode state st. Then, the
state st attends to instruction features using the state-instruction attention to generate attended
instruction feature ī, where the instruction features are encoded by a bi-directional LSTM [46] from
instruction I . With the attended instruction feature ī ∈ Rc and a multi-granularity map representation
M ∈ Rm×m×c, we predict a localization grid map P̂ ∈ Rm×m by calculating the cosine similarity
between ī and each map region feature in multi-granularity map:

P̂ = Softmax((Wq ī)(WkM)T ), (3)

where ī = Att(st,BiLSTM(I)), st,ht = GRU([M, fR(R), fD(D)],ht−1),

Wq, Wk are learnable parameter matrices, ht is hidden state of GRU at time step t, [·, ·] indicates
concatenation operation, fR(·) and fD(·) are off-the-shelf RGB and depth encoders, respectively.

3.4 Waypoint navigator and overall learning objective

With the learned multi-granularity map, we feed it together with the instruction to a waypoint
navigator for predicting navigation action. Specifically, an attended map features m̄ is produced by
weighted averaging multi-granularity map M using predicted localization results P̂ in the auxiliary
task described in Section 3.3. The localization results help agents highlight relevant regions that
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possibly contain instruction-relevant objects. Then, following CMA [34], another state encoder
(GRU) is exploited to predict a state s′t from the concatenation of attended map features m̄, attended
instruction features ī and the first state feature st, which can be formulated as follows:

s′t,h
′
t = GRU([m̄, ī, st],h

′
t−1), (4)

where h′ is a hidden state of GRU. We feed the state s′t to a waypoint predictor to predict a waypoint
ŵ = (∆x,∆y) indicating the next navigation goal. We also feed the state to a progress predictor to
predict a progress value p̂ indicating the completeness of navigation process. Both of these predictors
are a fully-connected layer. To get the ground-truth waypoint, we first plan the shortest path from the
current agent position to the nearest waypoint on the instruction-relevant path following LAW [42].
Then, we draw a circle with 3 meters radius centered at the agent position. The intersection point
between the path and circle is considered a ground-truth waypoint w.

The ground-truth progress is defined as the normalized distance from the agent current position to the
goal following existing work [34]. The waypoint loss lw and progress loss lp are defined as follows:

lw = ||ŵ −w||2, lp = ||p̂− p||2. (5)

With a predicted waypoint, we feed it to an off-the-shelf deep reinforcement learning model DD-
PPO [50] to determine a low-level action from action space A. Note that the DD-PPO model does
not update during training. If the predicted progress is higher than a threshold λp, the agent executes
STOP action. We update the waypoint every 3 time steps.

The overall learning objective for our method is as follows:

L = ls + αlo + βlp + γlw, (6)

where α, β and γ are hyper-parameters.

4 Experiments

4.1 Experimental setups

Dataset and evaluation metrics. We conduct our experiments on VLN-CE dataset, which contains
16,844 path-instruction pairs from 90 scenes in Matterport3D. It also contains about 150k augmented
data generated by EnvDrop [47]. The dataset is split into the train, seen validation, unseen validation,
and test set. We follow the existing works [20, 34] to evaluate the navigation performance using
success rate (SR), oracle success rate (OS), success weighted by path length (SPL), trajectory length
(TL), and navigation error from goal (NE). Note that an episode is considered successful if the agent
calls STOP action within 3m of the goal. More details about evaluation metrics are put in Appendix.

Implementation details. We implement our method based on Pytorch framework [40] and Habitat 3

simulator [45]. Following existing work [34, 42], the training process consists of two parts, i.e.,
teacher forcing training on augmented data [47] and fine-tuning models using dagger training. We
distribute training over 2 NVIDIA V100 GPUs for 3 days on average. A FORWARD action moves
the agent forward by 0.25 meters and a TURN action turns by 15◦. We use the same set of hyper-
parameters as used in the VLN-CE [34] and show these values in Appendix. The U-Net used for
extracting fine-grained features is pre-trained separately on RGB observations from Matterport3D
scenes following existing work [20] and is frozen during training. The map size m is set to 100. α, β,
and γ in Equation (6) are set to 10 such that four reward terms are in the same order of magnitude at
initialization. Progress threshold λp is set to 0.8.

4.2 Comparisons with state-of-the-art methods

We compare our WS-MGMap with current state-of-the-art methods in Table 1 on both seen and
unseen validation set of VLN-CE dataset. Our proposed WS-MGMap outperforms all methods that
follow the same VLN-CE setting (i.e.no panoramic images) in terms of NE, OS, SR, and SPL, which
demonstrates the effectiveness of the learned map representation. Besides, we also get comparable

3https://aihabitat.org/
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Table 1: Comparison between our WS-MGMap and state-of-the-art methods on VLN-CE dataset.
Methods marked with * use panoramic images. We highlight the best results among the methods that
do not use panoramic images in all tables.

Val-Seen Val-Unseen

TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑ TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑
AG-CMTP* [8] - 6.60 56.2 35.9 30.5 - 7.90 39.2 23.1 19.1
R2R-CMTP* [8] - 7.10 45.4 36.1 31.2 - 7.90 38.0 26.4 22.7
HPN+DN* [33] 8.54 5.48 53.0 46.0 43.0 7.62 6.31 40.0 36.0 34.0
CWP-CMA* [27] 11.47 5.20 61.0 51.0 45.0 10.90 6.20 52.0 41.0 36.0

Seq2Seq [34] 9.37 7.02 46.0 33.0 31.0 9.32 7.77 37.0 25.0 22.0
CMA [34] 9.26 7.12 46.0 37.0 35.0 8.64 7.37 40.0 32.0 30.0
LAW [42] 9.34 6.35 49.0 40.0 37.0 8.89 6.83 44.0 35.0 31.0
SASRA [29] 8.89 7.17 - 36.0 34.0 7.89 8.32 - 24.0 22.0
CM2 [20] 12.05 6.10 50.7 42.9 34.8 11.54 7.02 41.5 34.3 27.6

WS-MGMap (Ours) 10.12 5.65 51.7 46.9 43.4 10.00 6.28 47.6 38.9 34.3

Table 2: Results on VLN-CE challenge leaderboard. Methods marked with * use panoramic images.

Test-Unseen

Team TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑
CWP-VLNBERT* [27] 13.31 5.89 51 42 36
CWP-CMA* [27] 11.85 6.30 49 38 33
WaypointTeam* [33] 8.02 6.65 37 32 30

VIRL_Team [34] 8.85 7.91 36 28 25
CM2 [20] 13.85 7.74 39 31 24

WS-MGMap (Ours) 12.30 7.11 45 35 28

results compared with the methods that use panoramic images. This further verifies the importance of
the WS-MGMap for helping agents perceive environments comprehensively even just using a camera
sensor with a limited field of view. The detailed analyses are as follows.

We categorize existing methods into two types, i.e., one for the methods that without building a map
explicitly and one for that with a map representation. For the first type of methods (e.g., Seq2Seq,
CMA, LAW), our method outperforms them by a large margin. Specifically, compared with LAW,
which is the strongest baseline among them, we increase the success rate from 40.0% to 46.9%
and from 35.0% to 38.9% on val-seen and val-unseen, respectively. We attribute the improvement
to the usage of our multi-granularity map, which represents environments explicitly for reducing
the learning difficulty. As for the concurrent methods that are also with map representation (e.g.,
SASRA and CM2), our WS-MGMap also brings a significant improvement against CM2, increasing
success rate by 4.0% and 4.6% on val-seen and val-unseen, respectively. We suspect this is because
the semantic map used by these methods provides insufficient information for VLN while our WS-
MGMap solves this problem. All these results show the effectiveness of the proposed WS-MGMap,
which learns a comprehensive map representation for VLN.

We note that our WS-MGMap even outperforms some baselines (i.e., AG-CMTP, R2R-CMTP and
HPN+DN) that use panoramic images on val-unseen, increasing success rate from 23.1%, 26.4% and
36.0% to 38.9%, respectively. This show the potential for replacing expensive panoramic camera with
a common camera for VLN. We also note that our method has a relatively longer trajectory length.
We argue that this is not a good metric for evaluating VLN performance because an unsatisfactory
agent who always stops before it reaches the goal will also get a short trajectory length. A better
alternative metric is SPL, which considers both episode length and success rate. In terms of SPL, our
method significantly outperforms the existing methods who use the same settings with us (37.0% v.s
43.4% on val-seen and 31.0% v.s 34.3% on val-unseen).

VLN-CE leaderboard. We compare our WS-MGMap with prior work on the held-out test-unseen set
used for VLN-CE leaderboard4. In Table 2, our method is leading among those that use the standard
observation (no panoramas) following VLN-CE settings [34]. For a fair comparison, we only report
the results whose manuscripts are publicly available to ensure that no strong prior knowledge (e.g.,
exploring the environment in prior) is used.

4https://eval.ai/challenge/719/leaderboard/1966
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Table 3: Ablation study on different granularity information for map representation.

Val-Unseen

Map Type TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑
No Map 11.66 7.20 36.8 26.5 21.4

Fine-Grained Map 10.11 7.11 41.1 31.6 28.2
Semantic Map 10.89 6.80 42.2 33.3 28.2

Multi-Granularity Map (Ours) 10.00 6.28 47.6 38.9 34.3

Table 4: Ablation study on weakly-supervised auxiliary task and localization ground-truth types.

Val-Unseen

Auxiliary Task GT Type TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑
% - 10.24 6.68 41.7 33.1 29.0
✓ Hard 9.36 6.36 43.6 35.2 32.3
✓ Soft 10.00 6.28 47.6 38.9 34.3

4.3 Ablation studies

Effectiveness of multi-granularity map. Our WS-MGMap contains both fine-grained details and
semantic information about environments. We are interested to evaluate whether this different
granularity information helps to represent environments for VLN. To this end, we construct two
variants, i.e., one only uses the fine-grained map to represent environments, and another one only
uses semantic maps (combination of a semantic map projected from image segmentation results
and our predicted global semantic map). All other settings are kept the same, including training
losses and the auxiliary task. In Table 3, our WS-MGMap significantly outperforms these two
variants, increasing success rate from 31.6% and 33.3% to 38.9%, respectively. These results show
that both granularity information is important for VLN. Without the fine-grained map, agents are
hard to recognize object attributes. Without the semantic map, agents are required to recognize
all objects, including some common objects that can be represented in the semantic map, from
fine-grained object details, which increases learning difficulty. In comparison, our WS-MGMap
leverages complementary multi-granularity information for representing diverse objects. We also try
a variant that directly takes raw RGB-D as input to perform VLN in an end-to-end manner. However,
this variant drops success rate from 38.9% to 26.5%, indicating the importance of building a map
explicitly for VLN.

Effectiveness of weakly-supervised auxiliary task. For teaching agents to learn a representative map
that represents diverse objects accurately, we propose a weakly-supervised instruction-relevant object
localization auxiliary task. To evaluate the effectiveness of this task, we remove the object localization
loss in Equation (2), so that there is no auxiliary supervision signal for learning correspondence
between maps and instructions. In Table 4, this variant performs worse than our WS-MGMap,
success rate decreasing significantly from 38.9% to 33.1%. This shows the importance of the
proposed weakly-supervised auxiliary task, which helps to learn map representation from the natural
correspondence between map and instruction objects. The coarse ground truth used for this task is
soft, i.e., each map region is with a probability from 0 to 1. In this way, agents are required to figure
out the degree of correlation between instructions and all map regions. An alternative is a hard binary
ground-truth, i.e., map regions whose region-path distance smaller than a threshold are considered
positive and other regions are considered negative. In Table 4, this alternative performs better than
the baseline that does not use our proposed auxiliary task but is worse than our soft localization
ground-truth.

Effect of different layer features for fine-grained map. In this paper, we use a U-Net pre-trained
for segmentation task as an RGB encoder to extract image fine-grained details. Existing network
interpretability work [55, 30] points out that latent features from lower layers are dominated by color
and texture concepts while features from higher layers present more object parts. To evaluate which
types of features are more representative for describing environment fine-grained details, we project
different layer latent features (i.e., first layer, middle layer, last layer, and classification layer) to build
fine-grained maps. In Table 5, using last layer features outperforms other variants in terms of almost
all metrics. This is reasonable because the last layer features contain information from both the lower
layer and higher layer because of the skip connection mechanism in U-Net, which make it more
representative for representing environments. The features produced from the classification layer are
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Table 5: Ablation study on projecting latent features from different layers to build fine-grained map.

Val-Unseen

Projected Feature TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑
First Layer 9.14 6.29 39.6 32.1 28.6

Classification Layer 9.05 6.49 40.2 33.3 29.6
Last Layer 10.00 6.28 47.6 38.9 34.3

Walk on the red carpet
across the room to the 
next set of doors and 

weight there.
(a) (b) (c)

cabinetfloor couchtablewall counter cushionchair

WS-MGMap
WS-MGMap w/o
fine-grained map

WS-MGMap w/o
localization auxiliary task

Figure 3: Visualization of instruction-relevant object localization results.

logits for semantic classification. These features are dominated by semantics information, providing
less fine-grained environment details. We also find that an agent using middle layer features cannot be
trained to convergence. We suspect it is because the spatial resolution of the middle features (9× 9)
is too low such that the projected fine-grained map is sparse.

4.4 Visualization results

To evaluate whether the proposed multi-granularity map helps to represent diverse objects, we
visualize the localization results P̂ from Equation (3) in Figure 3. Compared with the variant that
does not contain a fine-grained map (b) and the variant without the weakly-supervised auxiliary
task (c), our WS-MGMap (a) localizes instruction objects more precisely. Specifically, red carpet is
incorrectly recognized as floor by a segmentation model. With fine-grained map, our WS-MGMap
localizes it robustly. The variant without fine-grained map is confused to localize it because the
semantic map can not represent red attribute and carpet object. The variant without the localization
auxiliary task also performs worse because it is hard to establish the correspondence between map
representation and diverse instruction-relevant objects. More results are shown in Appendix.

5 Discussion

Limitations and future work. Although our learned multi-granularity map helps for representing
environments comprehensively and provides useful information to improve VLN performance, the
semantic loss used in Equation (1) needs ground-truth semantic annotation, and our 2D top-down
map is hard to handle the situation when agents go to another floor. Future work may explore to
adapt 3D mapping technique [5] to our multi-granularity map. Besides, to improve the language-
to-object grounding, exploiting commonsense to find relevant areas of instruction-mention objects
could be an interesting future research direction. In addition, although our method shows promising
performance in photo-realistic simulated data, it has not been thoroughly evaluated in real world.
Directing adapting it to real environments may cause accidents such as breaking somethings and
hitting pedestrian.

Conclusion. In order to solve the problem that current maps provide insufficient information for VLN
task, we propose to gather different granularity information (i.e., fine-grained details and semantic
information) for map representation. Moreover, to make the map better represent diverse objects
described in instructions, we propose a weakly-supervised auxiliary task for learning to localize
instruction-relevant objects on the map with no need of extra localization annotation. Experimental
results show that the proposed method significantly outperforms state-of-the-art methods on VLN-CE
benchmark dataset. Qualitative results also show that the proposed multi-granularity map helps to
localize instruction objects that are incorrectly classified by current maps.
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Appendix for
“Weakly-Supervised Multi-Granularity Map Learning for

Vision-and-Language Navigation”

In the appendix, we provide more implementation details and experimental results of our WS-MGMap.
We organize the appendix as follows.

• In Sec. A, we provide more architecture details on semantic hallucination module, map encoder,
and object localization modules.

• In Sec. B, we provide more experimental details, i.e., training settings and evaluation metrics.
• In Sec. C, we provide more analysis on instruction-relevant object localization results.
• In Sec. D, we provide more ablation results on semantic hallucination module.
• In Sec. E, we provide more ablation results on dagger training paradigm.
• In Sec. F, we provide more experimental results on RxR-Habitat dataset.
• In Sec. G, we provide more analysis on the predicted waypoints for VLN.
• In Sec. H, we provide more visualization examples on instruction-object ambiguity cases.

A More architecture details

The architecture details on semantic hallucination module, map encoder, and objection localization
module for WS-MGMap (Figure 2 in main paper) are shown in Figures A and B. We follow the
PyTorch [40] conventions to describe each layer, and the tensor shapes are represented in (C, H, W)
notations. The meanings of each layer are as follows:

• ConvBR: a combination of nn.Conv2d, nn.BatchNorm2d and nn.ReLU layers with the input
channels, output channels, kernel size, stride and padding augments.

• TransConvBR: a combination of nn.ConvTranspose2d, nn.BatchNorm2d and nn.ReLU
layers with the input channels, output channels, kernel size, stride and padding augments.

• Conv: a nn.Conv2d layer with the input channels, output channels, kernel size, stride and
padding augments.

• AvgPool: a nn.AvgPool2d layer with the the kernel size, stride and padding arguments.

In our experiments, the fine-grained map, global semantic map, and multi-granularity map are of
different sizes (as shown in Figure A) for saving GPU memory. It is flexible to change their sizes,
keeping all map sizes the same, by changing the stride of convolutional layers. For a brief description,
in the main paper, we describe that all maps are of the same size m×m. In Figure B, RGB encoder
is an off-the-shelf ResNet18 [25] pre-trained on ImageNet [13]. Depth encoder is an off-the-shelf
ResNet50 [25] pre-trained on point-goal navigation [50]. L is the number of words in an instruction.

Semantic Hallucination

64x100x100
ConvBR (64, 64, 8, 2, 3)

ConvBR (64, 128, 5, 2, 1)

ConvBR (128, 256, 3, 1, 1)

TransConvBR (64, 32, 4, 2, 1)

ConvBR (32, 32, 3, 1, 1)

Conv (32, 27, 1, 1, 0)

U-Net

AvgPool (2, 2, 0)

ConvBR (256, 128, 3, 1, 1)

ConvBR
(256, 256, 3, 1, 1)

ConvBR (27, 128, 3, 1, 1)

256x24x24

27x48x48 27x48x48

Map Encoder

256x24x24

Fine-Grained Map 𝐌𝑓

Global Semantic Map 𝐌𝑠

Multi-Granularity Map 𝐌

Concat

64x24x24

Figure A: Architecture of semantic hallucination module and map encoder.
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Similarity

RGB

GRU

Attention
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256x1
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ResNet18

ResNet50Depth
256x1
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Multi-Granularity Map 𝐌

Instruction Feature

256x1
Localization Result  𝐏

Object Localization Module

AvgPool (24, 1, 0)

256x24x24

Figure B: Architecture of object localization module.

B More experimental details

Object categories predicted by hallucination module. We select the same 27 common-seen
object categories as CM2 [20] for the semantic hallucination module. We list all 27 object categories
as follows: {void, chair, door, table, cushion, sofa, bed, plant, sink, toilet, tv-monitor, shower, bathtub,
counter, appliances, structure, other, free-space, picture, cabinet, chest-of-drawers, stool, towel,
fireplace, gym-equipment, seating, clothes}.

More implementation details. We use an Adam optimizer with a learning rate of 2.5e-4. For
teacher-forcing training, we train on augmented trajectory data for 30 epochs. For dagger training,
we collect 5,000 trajectories at each iteration (total 10 iterations). During the data collection process
in nth iteration, the agent will take oracle action with probability 0.5n and predicted action otherwise.
At each iteration in dagger training, we train models on all collected trajectories for 4 epochs.

More details on evaluation metrics. We follow VLN-CE [34] to evaluate the navigation process in
terms of success rate (SR), oracle success rate (OS), success weighted by path length (SPL), trajectory
length (TL), and navigation error from goal (NE). A good agent should successfully navigate to the
goal following the path described by an instruction. The details of each metric are described below.

• SR: ratio of agent calling STOP within a threshold distance (3 meters) of the goal in an
allowed time step budget (500 steps).

• OS: ratio of agent reaching within a threshold distance (3 meters) of the goal.

• SPL: success rate weighted by path length, i.e., SPL = s× d/max(d, d̄), where s indicates
the value of success rate, d is the shortest geodesic distance from the starting point to the
goal, d̄ indicates the geodesic distance traveled by the agent.

• TL: average of agent trajectory length in meters.

• NE: average of geodesic distance from agent’s final position to goal in meters.

C More analysis on instruction-relevant object localization

We show additional visualization results of object localization (described in Sections 3.3 and 4.4 in
the main paper) in Figure C. Our WS-MGMap method precisely localizes objects that are out of the
segmentation category list (e.g., refrigerator, shelf, railing in the first three rows, respectively) and
objects that are specified by various attributes (e.g., wooden slatted floor and white door in the last
two rows, respectively). Note that the semantic map shown in the third column is not used by our
methods. Instead, we build a multi-granularity map progressively, containing both fine-grained and
semantic information about environments.

To quantitatively evaluate the instruction-relevant object localization performance, we measure IoU
between ground-truth and predicted object locations. Specifically, we consider the 10% area with
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the highest probability in 2D distribution P and P̂ (as described in Section 3.3) as ground-truth
and predicted locations. The IoU values for our method, variant w/o fine-grained map, and variant
w/o localization auxiliary task are 36.7%, 32.3%, and 6.9% respectively. These results further
demonstrate that the proposed multi-granularity map and localization auxiliary task help agents
localize instruction-relevant objects for the VLN task.

Walk down the hall toward 
the black shelf. Turn right 

and stop in the bedroom at 
the end of the hall.

(a) (b) (c)

Face in the direction of the 
refrigerator and head 

towards the stairs to the left 
of the refrigerator.

(a) (b) (c)

Walk forward and stop 
beside the bottom of the 
steps facing the double 

white doors.
(a) (b) (c)

WS-MGMap
WS-MGMap w/o
fine-grained map

WS-MGMap w/o
localization auxiliary task

cabinetfloor couchtablewall door cushionchair

Walk through the living 
room in front of the couch. 
Stop on the wooden slatted 

floor next to the railing.
(a) (b) (c)

Figure C: Visualization of instruction-relevant object localization results.

D More ablation study on semantic hallucination module

Following standard setting in VLN-CE task [34], we equip the agent with a camera with a limited field
of view (the horizontal field-of-view is set to 90 degrees). In this sense, the agent can only capture
RGB-D information about a small area in the environment. Motivated by existing works [20, 41], we
design a hallucination module that helps the agent hallucinate the areas that are out of view range. To
evaluate its effectiveness, we implement a variant that only predicts the semantic map within the field
of view (i.e., w/o hallucination). From Table 6, this variant performs worse than our agent. These
results show the importance of semantic hallucination for VLN.

Table 6: Ablation study on semantic hallucination module.

Val-Unseen

Method TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑
w/o hallucination 10.05 6.51 44.9 37.3 33.2

w/ hallucination (Ours) 10.00 6.28 47.6 38.9 34.3

E More ablation results on DAgger training

During the second training stage, we follow existing works [34, 42, 27] to use Dagger [44] training
techniques. As shown in these works, Dagger training helps to eliminate the negative effect of
disconnection between training and testing caused by imitation learning. To evaluate its effective-
ness, we conduct an experiment by replacing Dagger training with imitation learning. In Table 7,
removing schedule sampling (i.e., using ground-truth trajectories at all times) drops the performance
significantly.
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Table 7: Ablation study on training paradigm.

Val-Unseen

Method TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑
w/o DAgger Training 7.9 7.61 30.0 24.6 22.5

w/ DAgger Training (Ours) 10.00 6.28 47.6 38.9 34.3

F More experimental results on RxR-Habitat dataset.

We leverage the model trained on R2R-Habitat and transfer it to test on RxR-Habitat English data
split. We compare our methods with LAW [42], which is a competitive baseline in the VLN task.
From Table 8, our method outperforms different variants of LAW on both val-seen and val-unseen
data splits. It is worth noting that our model is directly transferred from R2R-Habitat to RxR-Habitat
without finetuning. These results demonstrate the effectiveness and robustness of our method.

Table 8: Comparison on RxR-Habitat dataset (English language split).

Val-Seen Val-Unseen

TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑ TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑
LAW pano [42] 6.27 12.07 17.0 9.0 9.0 4.62 11.04 16.0 10.0 9.0
LAW step [42] 7.92 11.94 20.0 7.0 6.0 4.01 10.87 21.0 8.0 8.0

WS-MGMap (Ours) 10.37 10.19 27.7 14.0 12.3 10.80 9.83 29.8 15.0 12.1

G More analysis on navigation episodes.

We show a navigation example in Figure D. An agent first perceives the environment by progressively
building a multi-granularity map (semantic maps are shown in Figure D for a demonstration purpose
only). Based on the multi-granularity map and instruction, the agent predicts a waypoint at every
three time steps, which leads the agent to navigate following the instruction.

To quantitatively evaluate the quality of predicted waypoints, we report the percentage of predicted
waypoints that locate within ground-truth path area, which is defined as 10% area with the highest
probability in 2D distribution P. Compared with the variant w/o fine-grained map (57.0%) and the
variant w/o localization auxiliary task (55.1%), the predicted waypoints from our method are more
accurate, with 61.2% waypoints located within the ground-truth path area.

Walk toward the kitchen 
and turn left at the counter. 
Proceed down the hallway, 

turn left into the living 
room and wait by the sofa.

prog: 0.0 prog: 0.1 prog: 0.2 prog: 0.5 prog: 0.8 

history pathagent predicted waypoint prog: predicted progress

cabinetfloor couchtablewall counter cushionchair

ground-truth path

Figure D: A navigation example using our WS-MGMap on val-unseen data split.

H More visualization on instruction-object ambiguity.

As described in Introduction section, there exist instruction-object ambiguity cases (e.g., the in-
struction object being a long bench but there are multiple different kinds of benches nearby) in
VLN task. To quantitatively evaluate how often this type of instruction-object ambiguity occurs,
we manually annotate these cases using a crowd-sourcing platform AMT. Quantitatively, there are
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… go left to the 
white couch …

black couch

white couch

… past the back of 
the brown chair …

white chair

brown chair

… go through the 
open door …

closed door

open door

… stop at checkered 
floor …

checkered floor 

wooden floor 

… wait by the glass 
dinning room table …

glass table

wooden table

Figure E: Examples of instruction-object ambiguity cases.

51% instructions containing objects described by specific attributed words (e.g., wooden table). 33%
trajectories of these instructions occur instruction-object ambiguity. We show some examples of such
instruction-object ambiguity cases in Figure E. The first row shows the observation captured during
navigation and the second row shows the object description in instructions. These ambiguity cases
further demonstrate the necessity to build a multi-granularity map to include both object fine-grained
details and semantic information for VLN task.
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