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Abstract

Learning to navigate to an image-specified goal is an important but challenging1

task for autonomous systems like household robots. The agent is required to well2

understand and reason the location of the navigation goal from a picture shot in the3

goal position. Existing methods try to solve this problem by learning a navigation4

policy, which captures semantic features of the goal image and observation image5

independently and lastly fuses them for predicting a sequence of navigation actions.6

However, these methods suffer from two major limitations. 1) They may miss7

detailed information in the goal image, and thus fail to reason the goal location. 2)8

More critically, it is hard to focus on the goal-relevant regions in the observation9

image, because they attempt to understand observation without goal conditioning.10

In this paper, we aim to overcome these limitations by designing a Fine-grained11

Goal Prompting (FGPrompt) method for image-goal navigation. In particular, we12

leverage fine-grained and high-resolution feature maps in the goal image as prompts13

to perform conditioned embedding, which preserves detailed information in the14

goal image and guides the observation encoder to pay attention to goal-relevant15

regions. Compared with existing methods on the image-goal navigation benchmark,16

our method brings significant performance improvement on 3 benchmark datasets17

(i.e., Gibson, MP3D, and HM3D). Especially on Gibson, we surpass the state-of-18

the-art success rate by 8% with only 1/50 model size.19

1 Introduction20

We focus on the image-goal navigation (ImageNav) task [41] that requires an agent to navigate to an21

image-specified goal position and face the same orientation as where the photo is taken. In this task,22

the agent needs to explore the environment and try to find the objects with their surroundings that23

best match the ones specified in the goal image. As an image is a clearer description than language,24

it shows a wide range of application prospects on household robots [19] or self-driving vehicles,25

serving as a navigation goal or intermediate landmark.26

Despite its wide applications, this task is still very challenging for the embodied agent due to the27

following two aspects. First, compared to object-goal navigation which assigns goal descriptions with28

specific semantic categories, it requires the agent to perceive the visual observation as well as the goal29

image and make a comprehensive understanding of the scene in order to identify goal-relevant objects.30

Second, objects share similar semantic meanings within one environment, making it challenging to31

accurately find out the desired object instance.32

Previous methods [25, 7, 15, 8, 30, 6, 2] seek to solve this task by decomposing the navigation system33

into several modules in isolation. In general, they tend to adopt efficient exploration skills to build a34

map as the understanding of the scene, incrementally update the map and localize the agent’s position35

at each time step, and further predict a waypoint to navigate to. However, these map-based methods36
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(a) Success rate comparison with baseline (ZER [42])
on three different datasets. Our method performs ef-
ficiently and robustly in both seen (i.e., Gibson) and
unseen (i.e., MP3D and HM3D) environments.
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(b) Comparison with SOTA both on success rate and
the number of parameters. the FGPrompt-EF, an early
fusion variant of our method, achieved 90.4% success
rate with only 1/50 model size compared to SOTA.

Figure 1: Main results of our proposed FGPrompt on the image navigation task.

require depth maps or the agent’s GPS position to build the occupancy map or topological map.37

The latest methods [11, 23, 42, 22, 37, 36] instead try to learn a navigation policy in an end-to-end38

manner using reinforcement learning. These methods set up two different encoders to obtain semantic39

embeddings from goal and observation images independently. Subsequently, a recurrent model takes40

these embeddings as input to predict a possible action sequence. However, they suffer from two41

major limitations: 1) As the details in the goal image are gradually overlooked as it goes through42

deeper network layers, it is harder to find useful cues for reasoning and finding the goal location.43

2) Existing methods leave the goal image apart from the observation when performing encoding, it44

is hard for the agent to focus on the goal-relevant regions in the observation since there is no goal45

prompting to guide the agent to understand the observation. In this paper, we focus on addressing46

these limitations to improve navigation performance.47

When people try to find a place captured in an image, they must look for the contextual cues presented48

with objects, shapes, colors, and textures in both the goal images and current visual observation.49

Spatial reasoning based on this information plays a critical role in understanding the scene, as50

people always compare and identify similarities, in order to consider the relative position of various51

elements and gain insights into the current position and the target location. Motivated by this fact,52

instead of considering only semantic features of goal and observation images, we propose a novel53

fine-grained goal prompting (FGPrompt) architecture to learn observation embeddings conditioned54

on the fine-grained and high-resolution features of the goal image.55

Specifically, we implement the goal prompting scheme as a fusion process between the goal and56

observation images and design a mid fusion (FGPrompt-MF) mechanism. This mechanism leverages57

fine-grained and high-resolution feature maps in the intermediate goal network layers as the prompts.58

These feature maps are proven to contain informative object details [16, 40]. Hereafter, conditioned59

on these feature maps, we utilize FiLM [26] layers to learn a transform function to adjust the60

observation activations to focus on goal-relevant objects. In addition, we also design an early61

fusion (FGPrompt-EF) mechanism by concatenating the goal and observation images at the pixel62

level. We then use a neural network to jointly model the concatenated image and implicitly fuse63

their information. Experimental results on the ImageNav benchmark show our proposed method64

significantly outperforms state-of-the-art methods, especially in both generalization ability to unseen65

environments and efficiency, as shown in Figure 1.66

To sum up, our contributions are as follows: 1) We propose a novel fine-grained goal prompting67

method for the image-goal navigation task, from which the agent learns to understand visual observa-68

tions conditioned on the fine-grained information from the goal image, and thus pay more attention69

to goal-relevant objects to reason the target location. 2) We explore different mechanisms to perform70

fine-grained goal prompting and find that both the mid fusion (FGPrompt-MF) and early fusion71

(FGPrompt-EF) mechanisms draw significant improvements compared to the late fusion baseline.72

3) With FGPrompt, our agent robustly understands the scene and finds objects relevant to the goal73

image. On ImageNav, our method improves the navigation success rate by 10.3% and 14.4% under74

default and panoramic settings, respectively.75
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2 Related Work76

Modular methods. Modular methods leverage strictly defined modules that are handcrafted [30, 19]77

or learnable [7, 15, 14, 8, 30, 6, 2] to address the image-goal navigation task step by step. Classical78

modular methods typically combine the exploration [38] component, simultaneous localization and79

mapping (SLAM [12, 35]) component, and path planning component to achieve the navigation goal.80

In order to localize the agent in an unknown environment, some approaches build an explicit metric81

map of the environment [7, 15], while others propose to obtain an implicit latent map [14] like a82

topological map [8, 30] or simply adopt object detectors without mapping [28]. Chaplot et al. [6]83

and Avraham et al. [2] train supervised deep models to tackle the sub-tasks, which require a lot of84

annotated data. Although off-the-shelf modules can be used with zero fine-tuning [19], they still85

heavily rely on pose and depth sensors, which greatly limits their applicability in the real world.86

RL-based navigation. Another pipeline for ImageNav is to directly learn from interactions with87

the environment using reinforcement learning (RL). RL-based navigation tends to learn an end-88

to-end reward-driven policy that maps observation to action [37, 36, 42, 22, 23] and shows great89

potential in this task. However, these methods still face the challenge of the sparse reward mechanism90

and poor generalization performance. To address these issues, previous works propose different91

methods to encourage the agent to explore more efficiently. Yu et al. [11] combines RL policy and92

visual representation learning model in a min-max game way to incentivize the agent to explore its93

environment. Al-Halah et al. [42] proposes a zero-shot transfer learning approach with a novel reward94

for its semantic search policy. Similarly, Majumdar et al. [22] uses a pre-trained CLIP to enhance95

image embedding. To tackle the long-horizon planning problem, an external memory module has96

been proposed by [23, 13, 3, 30, 20, 18] that learns a topological graph [13, 3, 30, 20, 18] or attention97

map [23] online. Self-supervised learning paradigm has also been explored by Yadav et al. [37, 36]98

to endow the navigation model with better representation ability. Different from existing approaches,99

we proposed a goal-prompted observation understanding method that learns to focus on goal-relevant100

objects through fine-grained goal prompts.101

Goal-conditioned learning. Existing RL-based navigation methods can be interpreted as learning a102

goal-conditioned policy, since they only perform fusion on the latent goal embedding and observation103

embedding. Only semantic-level information can be exchanged during fusing. Some embodied104

robot planning methods [4, 33, 17, 39] learn a goal-conditioned observation encoder by injecting the105

goal embedding to it. Stone et al. [33] and Brohan et al. [4] only consider the language as the goal106

description, while Jang et al. [17] and Yu et al. [39] try to fuse the goal image with the intermediate107

feature maps of observation encoder using an affine transformation proposed by FiLM [26]. However,108

they still focus on the latent embedding of goal images and neglect the fine-grained information in109

high-resolution activation maps. In this paper, we propose to make use of the intermediate activations110

in the goal encoder as informative guidance to condition the learning of the observation encoder.111

3 Image Goal Navigation using Fine-Grained Goal Prompting112

3.1 Task definition113

Image-goal navigation (ImageNav) requires an agent to navigate to a goal position that matches114

where the goal image vg was shot. Specifically, the agent starts at a random location p0 and only115

receives a goal image vg from the environment. At each time step t, the agent receives an egocentric116

RGB image vt captured by a RGB sensor fixed on its body, and executes an action at conditioned117

on vt and vg. In RL-based methods, the action at is selected based on the learned policy. After118

performing the action at, the agent will be assigned a reward rt that encourages the agent to reach the119

goal position as soon as possible. A more detailed definition of our setup can be found in Section 4.120

Existing RL-based methods tackle the ImageNav problem by learning an observation encoder and a121

goal encoder separately, and then fusing their output embeddings together. As shown in Figure 2122

(a), this fusion module is commonly equipped on most of the baseline methods. However, those123

embeddings preserve little detailed information, e.g., shape, texture, and spatial relationship, to124

promote finding and comparing objects relevant to the goal image [40, 16]. To tackle this challenge,125

we propose to leverage fine-grained information from lower-level goal image features as prompts to126

promote the agent’s ability to focus more on goal-relevant objects.127
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Figure 2: Illustration of baseline fusion (a) and our goal prompting (b, c, d) for image-goal
navigation. All these methods take observation and goal images as input and output fused features.

3.2 Fine-grained Goal Prompting128

We design and explore three different fine-grained goal prompting methods that vary from fusion129

mechanism, namely Skip Fusion, Mid Fusion, and Early Fusion. For the first Skip Fusion130

mechanism, we investigate injecting fine-grained goal prompting utilizing a handcrafted keypoint131

matching module. After that, we replace the handcrafted matching module with learnable affine132

transform layers to enable active prompt learning and propose the Mid Fusion mechanism. Finally,133

we simplify the above mechanisms by introducing a joint modeling framework to perform implicit134

fusion, w.r.t. Early Fusion. Details of our proposed methods are as follows.135

Skip Fusion via Keypoint Matching. We first attempt to equip the baseline late fusion model136

with the ability to benefit from fine-grained information in the goal image, we attach an additional137

low-level fusion module using handcrafted keypoint matching methods [21, 29], as an improvement138

of the Late Fusion baseline. We name this mechanism Skip Fusion as it fuses the goal image and139

observation image in the both early and later stage but skip the others, as shown in Figure 2 (b).140

Keypoint matching, which aims to discover representative keypoints in an image and then describe141

and match them with the most similar ones in another image. As these points are detected based on142

the low-level statistic [21, 9] of image pixels, we leverage them to play a role as low-level fusion.143

This scheme is handcrafted as it is not learnable during training. To enable batch inference, we144

leverage a deep learning-based keypoint detecting [10] and a matching [29] method to obtain matched145

keypoint between the goal image and the observation image. Hereafter, we select top-k matched146

points according to their matching score to compose a variable zk and concatenate them together147

with zg and zo as the fusion result:148

zfusion = zg ⊕ zo ⊕ FC(zk) (1)

where zk = (x1, y1, x
′
1, y

′
1, ..., xk, yk, x

′
k, y

′
k) is a flattened vector of k keypoints. The default value149

is set to −1 if the number of matched keypoints is fewer than k.150

Mid Fusion via FiLM Layers. The handcrafted keypoint matching module may not work in a151

situation where the observation does not shoot the same objects with the goal image. A feasible152

solution is replacing the handcrafted low-level fusion module with a learnable fusion scheme. Previous153

literature [17, 39] inputs the goal embedding into the ResNet visual backbone via FiLM [26] layers,154

which adapt a learnable affine transformation conditioned on the input embedding to the intermediate155

activation maps in each residual blocks. Through these layers, we can easily connect the intermediate156

layers in both the goal encoder and the observation encoder to perform mid fusion.157
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Different from the existing approaches that leverage abstract language embedding as a global condition158

for all layers, we propose to use the hierarchical representations from the intermediate goal encoder159

layers. This allows us to make good use of the fine-grained information in high-resolution feature160

maps. Specifically, we perform FiLM affine transformation on the resnet blocks of the observation161

encoder, where the affine factors βi
·,·, γ

i
·,· in block i are conditioned on the shaped activation map zig162

from the correspondent block of the goal encoder. This process can be formulated as:163

γi
c = fc(zg) βi

c = hc(zg) (2)
164

ẑio = γi
cz

i
o + βi

c (3)

where ẑio denotes a transformed activation map in block i and c denotes the cth feature of the feature165

map. The function f and h learn to map the condition variable into the affine factors. In practice, we166

implement them as 1× 1 convolutions to maintain the same resolution between the input and target167

activation map. Section 4.2 further investigates the choices of the mapping function and the number168

of FiLM layers. The output from the conditioned observation encoder fo can then be viewed as the169

fused feature zfusion, as shown in Figure 2 (c). The fused feature can be written as:170

zfusion = fo(vo|vg) (4)

Early Fusion via Joint Modeling. As discussed above, the mid fusion mechanism casts the inter-171

mediate activation map of goal observation vg as a fine-grained prompt for the observation encoder172

fo, however, it requires separate encoding, introducing multi-stage projection and transformation173

with additional parameters and computation. One possible solution to simplify this mechanism is174

directly fusing those two images very early and then jointly modeling them using the same encoder. In175

particular, we concatenate the goal image with the observation image on the RGB channel dimension,176

resulting in an input tensor shaped 128× 128× 6. This concatenated tensor is then fed into a ResNet177

encoder with a stem convolution layer that takes the 6-channel image as input. Detailed ablation on178

the early fusion operation can be found in Section 4.2. In this case, the fusion mechanism can be179

written as:180

zfusion = fo(vo ⊕ vg) (5)

3.3 Navigation Policy181

Based on the fused embedding zfusion of the goal image and observation image, we train a navigation182

policy π using reinforcement learning (RL):183

st = π(zfusion ⊕ at−1|ht−1) (6)

where st is the embedding of the agent’s current state. ht−1 denotes hidden state of the recurrent184

layers in policy π from previous step. Following previous methods [42, 22], we adopt an actor-critic185

network to predict state value ct and action at using st and train it end-to-end using PPO [32]. We186

utilize the ZER reward [42] to encourage the agent to not only reach the goal position but also face187

the goal orientation. More details can be found in Appendix.188

4 Experiments189

Datasets. We use the Habitat simulator [31, 34] and train our agent on the Gibson dataset with190

72 training scenes and 14 testing scenes under the standard setting. We use the training episodes191

provided by [23] and trained our agent for 500M steps. We report results under multiple datasets to192

allow direct comparison to various prior works. On the Gibson dataset, we validate our agent on193

split A generated by [23], and split B generated by [15]. On the MP3D and HM3D, we use the test194

episodes collected by [42].195

Agent configuration. We follow the recipe of previous trails [42, 22, 37] to initialize an agent196

equipped with only RGB cameras of 128 × 128 resolution and 90◦ FOV. When compared with197

methods that use a panoramic input, we initialize four RGB sensors to the front, left, right, and back198

directions of the agent, following [23, 37]. The agent’s action space is comprised of four discrete199

actions, including MOVE_FORWARD, TURN_LEFT, TURN_RIGHT, STOP. The minimum units200

of rotation and forward movement are 30◦ and 0.25m respectively.201
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Method Backbone Pretrain Sensor(s) Memory Split SPL SR

NTS [8] ResNet9 N/A RGBD+Pose % A 43.0% 63.0%
Act-Neur-SLAM [6] ResNet9 N/A RGB+Pose % A 23.0% 35.0%
SPTM [30] ResNet9 N/A RGB+Pose % A 27.0% 51.0%

ZER [42] ResNet9 N/A RGB % A 21.6% 29.2%
ZSON [22] ResNet50 OSD RGB % A 28.0% 36.9%
OVRL [37] ResNet50 OSD RGB % A 27.0% 54.2%
OVRL-V2 [36] ViT-Base HGSP RGB+Pose % A 58.7% 82.0%
FGPrompt-MF (Ours) ResNet9 N/A RGB % A 62.1% 90.7%
FGPrompt-EF (Ours) ResNet9 N/A RGB % A 66.5% 90.4%
FGPrompt-EF (Ours) ResNet50 N/A RGB % A 68.5% 92.3%

Mem-Aug [23] ResNet18 N/A 4 RGB ✓ A 56.0% 69.0%
VGM [20] ResNet18 N/A 4 RGB ✓ A 64.0% 76.0%
OVRL [37] ResNet50 OSD 4 RGB % A 62.5% 79.8%
TSGM [18] ResNet18 N/A 4 RGB ✓ A 67.2% 81.1%
FGPrompt-EF (Ours) ResNet9 N/A 4 RGB % A 75.0% 94.2%

NRNS [15] ResNet18 N/A RGBD % B 12.4% 24.0%
FGPrompt-EF (Ours) ResNet9 N/A RGB % B 70.5% 93.0%

Table 1: Comparison with state-of-the-art methods on Gibson. All methods are trained and
evaluated both on the Gibson dataset.

Methods Backbone MP3D HM3D

SPL SR SPL SR

Mem-Aug [23] Resnet18 3.9% 6.9% 3.5% 1.9%
NRNS [15] Resnet18 5.2% 9.3% 4.3% 6.6%
ZER [42] Resnet9 10.8% 14.6% 6.3% 9.6%
FGPrompt-MF (Ours) Resnet9 50.4% 77.6% 49.6% 76.1%

Table 2: Cross-domain evaluation on MP3D and HM3D. The agent is trained in Gibson environ-
ments and directly transferred to new environments for evaluation.

Evaluation metrics. We report the success rate (SR) and Success weighted by Path Length202

(SPL) [1], which takes into account path efficiency of the navigation process. An episode is con-203

sidered successful if the agent stops within 1.0m Euclidean distance from the goal location and the204

maximum number of steps in an episode is set to 500 as the default setting.205

4.1 Comparison with State-of-the-art Methods206

Evaluation on Gibson. In Table 1, we report the ImageNav results on Gibson averaged over207

three random seeds (the variances of all random seed results are less than 1e-4.). We compare our208

methods with state-of-the-art methods in two different settings, one takes only one RGB sensor as209

input following [42, 22, 37] and another one takes 4 RGB sensors to assemble a panoramic view210

following [23, 37]. For the SLAM-based methods in the first three rows, we report the number211

reproduced by Mezghani et al. [23]. We found that our proposed FGPrompt-MF and FGPrompt-212

EF methods take an absolute advantage compared with all previous methods. Even compared to213

OVRL-V2 [36], a method that utilizes a much larger visual backbone (ViT-B) pre-trained on an214

in-domain image dataset, we still achieved large performance gains on both SR (92.3% vs. 82.0%)215

and SPL (68.5% vs. 58.7%) in the absence of additional pose sensor input. This finding reveals the216

effectiveness and efficiency of our proposed method.217

We extend our FGPrompt-EF to the panoramic view setting (4 RGB) for direct comparison with some218

memory-based methods [23, 20, 18] and pre-trained method [37]. We found that our FGPrompt-EF219

outperforms these memory-based methods by at least 13.1% in success rate and 7.8% in SPL, even220

without additional external memory module and pre-training phase. Besides, we also provide a221

comparison result on the non-mainstream testing episodes (split B) following [15]. Compared with222

the self-supervised method NRNS [15] that pretrained on passive videos, our FGPrompt-EF brings223

58.1% improvement in success rate and 69.0% in SPL, which shows a great advantage by learning to224

understand the scene based on goal prompting through interacting with the environment.225
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Setting SPL SR

Later Fusion (baseline) 11.2% 13.0%

Skip Fusion via keypoint matching (FGPrompt-SF) 24.7% 41.6%
Mid Fusion via FiLM layers (FGPrompt-MF) 50.4% 77.3%
Early Fusion via joint modeling (FGPrompt-EF) 54.7% 78.9%

Table 3: Comparison of different goal prompting methods on Gibson ImageNav task. Fusing
the fine-grained goal prompts with the observation instead of directly concatenating their semantic
embeddings yield significant improvement.

Mapping Method SPL SR

N/A 11.2% 13.0%
Semantic Mapping 24.0% 32.0%
FG/HR Mapping 50.4% 77.3%

Table 4: How to map activation into affine
factors? Using Fine-grained High-resolution
(FG/HR) mapping performs significantly better.

Depth SPL SR

1 50.4% 77.3%
2 49.3% 77.6%
4 50.2% 71.4%

Table 5: How deep should the Mid Fusion
perform? Performing Mid Fusion on the early
layers works better than on all layers.

Cross-domain evaluation on out-of-domain datasets. In Table 2, we report the cross-domain226

evaluation results on the unseen scenes in the Matterport3D (MP3D) [5] and HM3D [27] to verify the227

generalization ability from seen environments to unseen environments. Following [42], we directly228

transfer our model trained on Gibson to these two new datasets, without any tuning. Since there exists229

a very large visual domain gap between these datasets, as well as more complex and larger scenes230

in MP3D and diverse scene types in HM3D, this setting is extremely challenging. We leverage the231

testing episodes released by ZER [42]. Compared with the baseline method ZER, our fine-grained232

and high-resolution conditioned embedding method brings 7× improvements in the success rate233

without any additional effort, which shows the generalization ability of our method.234

4.2 Ablation Study235

In Section 3.2, we introduce three different types of goal prompting methods, varying from the236

fusion mechanism. In this section, we first compare the effectiveness of different methods on the237

ImageNav task. Then we present the detailed ablation of each method to empirically discover their238

best implementation. For convenience and fairness, all variants in the ablation study are trained for239

50M steps on the Gibson dataset.240

Comparing different goal prompting methods. We first compare the proposed goal prompting241

methods on the image-goal navigation task. As shown in Table 3, the Skip Fusion (FGPrompt-SF)242

variant, integrated fine-grained information by simply adding a keypoint matching-based fusion243

module to the baseline, performs significantly better on the ImageNav task (from 14.0% to 41.4%).244

This reveals that fine-grained goal prompting is important as it provides the navigation policy245

informative cues to compare and find goal-relevant objects. However, when the observation does not246

shoot the same objects with the goal image, there are no available matching keypoints to serve as247

low-level goal prompts, which may hinder the performance. The other two variants further exchange248

information in a learnable manner to tackle these problems. In detail, the Mid Fusion (FGPrompt-249

MF) mechanism leverages the intermediate activation maps with varied resolutions to perform goal250

prompting. In this case, the agent learns to understand visual input and focus on possible goal-relevant251

regions based on the fine-grained prompts from the goal image. As a result, this variant further252

increases the navigation success rate by 27.2%. Besides, as a simplified version of our proposed Mid253

Fusion mechanism, the Early Fusion mechanism enables an implicit fusion process through jointly254

modeling the goal and observation images. This scheme learns to exchange information between255

two input images implicitly and thus requires no expertise to design a proper fusion mechanism. In256

Table 3, this simple but ingenious design brings a further improvement (4.3% in SPL) compared to257

the Mid Fusion mechanism which is well-designed and ablated. We attribute this to its adaptive and258

learnable fusion fashion.259
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Setting SPL SR

3D stack 17.3% 20.5%
Edge concat 37.2% 54.8%
Channel concat 54.7% 78.9%

Table 6: How to perform early fusion? A
naive concatenation at the channel dimension
works the best.

Setting SPL SR

Separate modeling 11.2% 13.0%
Tied modeling 12.3% 14.6%
Joint modeling 54.7% 78.9%

Table 7: Does joint modeling works? Yes, it greatly
boosts navigation performance compared to the base-
line and another similar approach.

(a) goal 
image

(b) observation
image

(c) goal
activation

(d) observation act. 
(before fusion)

(e) observation act. 
(after fusion)

Figure 3: EigenCAM visualization of the activation map in the fusion layer of FGPrompt-MF.
Images in different rows illustrate results in different testing episodes in Gibson. The Mid Fusion
mechanism learns to focus on the objects that are relevant to the goal image.

Ablation on the Mid Fusion mechanism. We further ablate to investigate the detailed setting of260

our proposed Mid Fusion mechanism, which takes advantage of FiLM [26] layers to apply fusion261

based on fine-grained goal-conditioned affine transformation. In contrast to existing goal-conditioned262

methods, we point out that fine-grained information in high-resolution feature maps is a key to263

understanding visual observation. To verify the necessity of this information for an embodied agent,264

we conduct ablation studies on the FiLM layers in Table 4. We design two different mapping methods265

that map the activation map into the affine factors in Equation 2, namely Semantic Mapping and266

Fine-grained High-resolution Mapping. Specifically, for the former, we average pool the activation267

map in each layer within the spatial dimension, removing the fine-grained information in this layer,268

and then leverage two separated fully connected layers to perform mapping. For the latter method,269

we keep the spatial resolution of the original activation maps, hence preserving the fine-grained270

information. We initialize two convolution layers with 1 × 1 stride to learn a mapping function.271

Not surprisingly, only taking the coarse-grained input from the goal encoder as a condition leg a lot272

behind, as it lose lots of details that might serve as possible cues during the pooling,273

Another important question is how deep the network layers should be considered to perform fusion.274

Since the perception field glows as the feature map resolution reduces in deeper layers, the information275

about objects and scenes in these layers could be more and more coarse-grained. We design an276

ablation study that integrates a different number of network layers to perform fusion. As shown277

in Table 5, we found that fusing the first two network layers (each layer indicates an entire Resnet278
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block) performs well, indicating that fine-grained information in the early layers is important for279

goal prompting. When the fusion depth increases to 4 layers, the navigation performance slightly280

degrades, as considering more prompting layers increases the learning difficulty.281

Ablation on the Early Fusion mechanism. Firstly, we conduct an ablation study to find out how282

to perform early fusion on the goal image and observation image. To achieve a unified model for283

both two input images, there exists a naive approach to merge them at the pixel level. In particular,284

we try to concatenate these two images on the different dimensions, as shown in Table 6, where285

concatenation on the channel dimension performs better than other choices. We conjecture that286

aligning and modeling the goal and observation images enables spatial reasoning, which endows287

the agent with a better ability to understand and deduce the relevant regions in visual observation288

to explore. We also investigate stacking the two images at an additional axis and performing 3D289

convolution to embed them together. Interestingly, results in Table 6 show that this variant failed to290

learn an effective fusion process, although it aligns both images in the spatial dimension.291

Secondly, in order to determine the effectiveness of our proposed joint modeling scheme that takes292

both the goal and observation image as input, we compare it with a similar approach that shares the293

same parameters between the goal encoder and observation encoder following [23], namely Tied294

Modeling. In Table 7 we directly compare them with a baseline that learns a goal encoder and an295

observation encoder separately. We observe that the Tied Modeling variant performs worse similar to296

the Separate Modeling baseline. Though using shared parameters to encode both goal and observation297

images, this architecture does not enable goal-prompted learning to focus on the goal-relevant regions298

and thus failed to effectively reason the goal position.299

4.3 Analysis and Qualitative Visualizations300

How does the fine-grained goal prompting work? We visualize the activation maps using Eigen-301

CAM [24] before and after the fusion layers of our mid fusion goal prompting method (FGPrompt-MF)302

to find out how it works in the image navigation task. Illustrations are presented in Figure 3. Prompted303

with the fine-grained and high-resolution activation map from the goal image, the agent is able to find304

out the relevant objects in the current observation and pay more attention to them, as shown in the305

activation visualization in the last column. Interestingly, we found that even though the agent is far306

away from the goal position, the mid fusion mechanism still guided the observation encoder to focus307

on relevant objects (see the wooden cabinet in the third row) or explore some candidate regions that308

may contain the target objects (see the kitchen bar in the last row). We also provide visualization and309

analysis of the other two goal prompting methods in Appendix.310

Performance versus model size. To discuss the feasibility of application on real-world robot311

systems with resource-limited devices (e.g., household robots), we investigate and compare the model312

size of our models with previous ones. We report the agent’s number of parameters, as well as the313

ImageNav success rate on Gibson, and visualize them on the same coordinate system. As shown in314

Figure 1b, our FGPrompt-EF model outperforms existing methods by a large margin with a much315

smaller model size, indicating its promising ability on applying to real-world robot systems.316

5 Discussion317

Limitation and future work Although our proposed FGPrompt achieved great improvements318

on different ImageNav datasets, we still need a comprehensive study to find out if this method is319

applicable to real-world robots. In the future, we will investigate how to deploy this visual navigation320

methodology to a real-world robot system, to perform sim-to-real transformation.321

Conclusion In this paper, we propose a novel fine-grained and high-resolution conditioned em-322

bedding method for visual navigation. In particular, we design a Mid Fusion architecture via FiLM323

Layers conditioning (FGPrompt-MF), which leverages the high-resolution activation maps from the324

goal encoder to perform an affine transformation on the observation encoder. Furthermore, we rethink325

it and condense it into an Early Fusion mechanism via joint modeling (FGPrompt-EF), with implicit326

learning of the fusion process. Experimental results on the Image-goal Navigation task show our327

method has excellent performance, concise architecture design, and strong generalization ability to328

unseen environments.329
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