
A2Nav: Action-Aware Zero-Shot Robot Navigation by Exploiting
Vision-and-Language Ability of Foundation Models

Peihao Chen1,3 Xinyu Sun1 Hongyan Zhi1 Runhao Zeng2

Thomas H. Li5 Gaowen Liu7 Mingkui Tan1,4* Chuang Gan5

1South China University of Technology, 2Shenzhen University,
3Pazhou Laboratory, 4Key Laboratory of Big Data and Intelligent Robot, Ministry of Education,

5Shenzhen Graduate School, Peking University, 6UMass Amherst, 7Cisco Research

Abstract

We study the task of zero-shot vision-and-language nav-
igation (ZS-VLN), a practical yet challenging problem in
which an agent learns to navigate following a path de-
scribed by language instructions without requiring any
path-instruction annotation data. Normally, the instruc-
tions have complex grammatical structures and often con-
tain various action descriptions (e.g., “proceed beyond”,
“depart from”). How to correctly understand and execute
these action demands is a critical problem, and the absence
of annotated data makes it even more challenging. Note
that a well-educated human being can easily understand
path instructions without the need for any special training.
In this paper, we propose an action-aware zero-shot VLN
method (A2Nav) by exploiting the vision-and-language abil-
ity of foundation models. Specifically, the proposed method
consists of an instruction parser and an action-aware nav-
igation policy. The instruction parser utilizes the advanced
reasoning ability of large language models (e.g., GPT-3)
to decompose complex navigation instructions into a se-
quence of action-specific object navigation sub-tasks. Each
sub-task requires the agent to localize the object and nav-
igate to a specific goal position according to the associ-
ated action demand. To accomplish these sub-tasks, an
action-aware navigation policy is learned from freely col-
lected action-specific datasets that reveal distinct charac-
teristics of each action demand. We use the learned nav-
igation policy for executing sub-tasks sequentially to fol-
low the navigation instruction. Extensive experiments show
A2Nav achieves promising ZS-VLN performance and even
surpasses the supervised learning methods on R2R-Habitat
and RxR-Habitat datasets.

*Corresponding author. Email: mingkuitan@scut.edu.cn

Go Past

Go To

Exit

Instruction: Proceed beyond the sofa after departing from the
bedroom. Continue walking forward until reaching the table

Large Language Model

Vision-and-Language Model

Exit Bedroom Go past Sofa Go to Table

Sofa

Table

Table

Table

Bed

Sofa

Our Method

Existing Method

Start Position

Goal Position

Action Demand

Figure 1: Existing zero-shot VLN methods navigate to the
front of the landmarks sequentially, overlooking the action
demands in the instruction. Our A2Nav correctly parses ac-
tion demands from the instruction and accurately executes
them for successfully following navigation instruction.

1. Introduction

In vision-and-language navigation (VLN) tasks, an agent
is required to navigate in a novel environment according
to language navigation instructions. This is a crucial step
towards creating intelligent agents that can interact with
humans in a natural way, such as in the context of home
robotics [2, 53, 21, 22] or warehouse assistants [34, 15].

Current dominant methods [10, 31, 43, 24] attempt to
learn VLN ability in a supervised learning manner, relying

ar
X

iv
:2

30
8.

07
99

7v
1

 [
cs

.C
V

]
 1

5
A

ug
 2

02
3

on a large amount of manually labeled path-instruction pair
data. However, creating high-quality labeled data requires
a significant amount of human effort, which can be time-
consuming and expensive. Additionally, the labeled data
may not cover all possible scenarios, making it challenging
for the model to generalize to new, unseen environments.
To address these challenges, exploiting the knowledge from
large foundation models [6, 40, 16] for learning navigation
ability without requiring downstream task annotated data is
a potential solution. We call it zero-shot navigation ability.

Recently, researchers have made some attempts [20, 36,
3, 55] at solving object navigation tasks in a zero-shot man-
ner. They use a foundation vision-and-language model
(VLM) [40] to localize the object [20] or use it to encode
the object goal features [36], enabling the agent to navi-
gate to any object goal described by natural language. To
utilize this zero-shot object navigation ability for the VLN
task, researchers [45, 18] leverage large language models
(LLMs) [6] to parse all landmarks in the navigation instruc-
tion, decomposing the VLN task into a sequence of object
navigation sub-tasks. The agent navigates to these land-
marks one by one to follow the navigation instruction.

Although some progress has been made, existing meth-
ods fail to take into account the varied action demands (e.g.,
“proceed beyond”, “depart from”) in instructions. This may
lead the agent to the wrong destination and fail to follow
the instruction. For the example in Figure 1, the agent is
expected to “exist the bedroom”, but the existing methods
only take the landmark “bedroom” into consideration. As a
result, the agent mistakenly goes into the bedroom, which
is in the opposite direction of the path described by the in-
struction. To solve this problem, the agent must correctly
figure out the expected action demand associated with each
landmark and accurately execute them. However, due to the
complex grammatical structure and diverse action expres-
sions in the instruction, correctly understanding the action
demands is non-trivial. More critically, under the condition
that no path-instruction annotation is available, how to learn
a navigation policy that is able to execute these action de-
mands is still an open problem.

In this paper, we propose an action-aware navigation
method, named A2Nav, for the zero-shot VLN task. Our
method consists of two components: an instruction parser
for figuring out landmarks and associated action demands;
and an action-aware navigation policy for executing these
action demands sequentially for navigation.

Specifically, we leverage the reasoning ability of LLMs
for decomposing an instruction into a sequence of action-
specific object navigation sub-tasks. Each sub-task (e.g.,
“go past sofa”) requires the agent to localize the landmark
and navigate to an expected goal position. According to the
action demands that lead the agent to different goal posi-
tions, we summarize five fundamental sub-tasks and learn

an action-specific object navigator for each of them. How-
ever, due to the absence of labeled data for training these
navigators, we adopt the approach proposed in ZSON [36]
to transform the task of training an object navigator into
training an image-goal navigator using a freely collected
dataset. In detail, we first encode both the text descrip-
tion and image of the landmark to a shared semantic fea-
ture space using CLIP [40]. Then we construct a dataset
by randomly sampling a path and capturing an image of the
landmark at a specific location based on the corresponding
action demand. For instance, for the “go past” action de-
mand, the landmark is usually located in the middle of the
navigation path. The image-goal navigator trained on this
dataset could be used for action-specific object navigation
given a CLIP-encoded textual landmark.

Extensive experiments demonstrate that our A2Nav
achieves promising performance on zero-shot VLN task,
getting 22.6% and 16.8% success rates on R2R-Habitat
and RxR-Habitat, respectively without requiring any path-
instruction annotation. Notably, the proposed A2Nav even
outperforms the current state-of-the-art supervised learning
method [10] by 1.8% on RxR-Habitat. In summary, our
main contributions are as follows:

• Instead of treating vision-and-language navigation as a
sequence of object navigation tasks, we take into account
the instruction action demands and decompose the in-
struction into a sequence of action-specific object navi-
gation sub-tasks, where the agent is expected to not only
localize the landmarks but also navigate to different goal
position according to the associated action demand.

• To address the problem that existing zero-shot navigators
cannot satisfy different action demands, we identify and
summarize five fundamental action demands and learn a
unique navigator for executing each one without requir-
ing manual path-instruction annotation, leading to more
accurate and explainable navigation results.

2. Related Works
2.1. Vision-and-Language Navigation

Existing VLN methods can be summarized into two cat-
egories. The first category of methods leverage reinforce-
ment learning method [4, 50, 48], data augmentation [19,
46], auxiliary tasks [35, 57, 49] and pre-training [11, 27, 25]
to perform navigation on discrete environments where only
points in a sparse set are navigable. We focus on another
category of VLN methods that perform navigation on con-
tinuous environments [32, 10, 24, 47, 29, 30, 8, 1, 17].
Among these methods, Krantz et al. [32] are the first to pro-
pose a continuous VLN setting based on the Habitat simula-
tor [44]. Qi et al. [39] further propose to train the agent in an

Proceed beyond the sofa after

departing from the bedroom.

Continue walking forward until

reaching the table…

Instruction
Instruction

Parser

Action-Aware

Navigation Policy

…

Observation

Action1. [Exit] the bedroom

2. [GoPast] the sofa

3. [GoTo] the table

4. Stop

[GoTo] Navigator

[GoPast] Navigator

[GoInto] Navigator

[GoThrough] Navigator

[Exit] Navigator

Figure 2: General scheme of A2Nav for zero-shot VLN task. A2Nav consists of an instruction parser for decomposing
an instruction into action-specific object navigation sub-task sequence, and an action-aware navigation policy for executing
these sub-tasks sequentially.

end-to-end manner that takes step observation and instruc-
tion as input to predict an action for each step. Other meth-
ods like waypoint prediction [29] and semantic top-down
map construction [10, 24] are proposed to enhance the nav-
igation performance. However, these methods rely heavily
on manual-labeled path-instruction pairs to train the agent
in a fully supervised manner, thus are not scalable to a new
scenario without any path-instruction pair data.

2.2. Zero-Shot Object Navigation

Since the navigation instruction is often described by
several landmarks, it can be decomposed into sequential ob-
ject navigation tasks. The object navigation task has been
explored by previous literature [20, 36, 37, 9, 41, 3, 7, 52].
Among these methods, we notice that some trails that de-
sign the object navigation agent in a zero-shot manner show
great potential. Gadre et al. [20] design a heuristic algo-
rithm to navigate to an object using the open-world object
recognition ability of the foundation vision-and-language
model (i.e., CLIP [40]). Some works like ZER [3] and
ZSON [36] learn an image navigation agent first, and then
map the image goal representation into object text goal
embedding space, and thus transfer to the object naviga-
tion task. In this paper, we follow ZSON [36] to use a
pre-trained foundation model CLIP to map the goal repre-
sentation into joint vision-and-language embedding space
and thus train an object navigator using randomly collected
image-path pairs.

2.3. Zero-Shot Vision-and-Language Navigation

Based on the previous success on VLN and zero-shot ob-
ject navigation, we aim to tackle the VLN task in the zero-
shot manner, releasing the agent from expensive manual-
labeled path-instruction training data. This problem has
not been fully exploited yet. Pioneering works [45, 18, 14]
have already verified the effectiveness of foundation models
(LLM [6] and VLM [40]) in this scenario. These methods

leverage GPT-3 [6] to extract navigation landmarks from
the instruction and then initialize a heuristic object naviga-
tor using CLIP [40] to find out the landmark from visual
observation and to navigate to the front of the landmark.
However, these methods neglect actions in the instructions
since they can only directly go to the landmark. Concur-
rent work [56] leverages a GPT model for inferring navi-
gation actions on a discrete navigation graph. The perfor-
mance in continuous environments has not been well ex-
plored. Our proposed A2Nav solved these issues using a
learnable action-aware object navigator.

3. Action-Aware Zero-Shot VLN

3.1. Problem Definition

In the vision-and-language navigation (VLN) task, an
agent performs a series of low-level actions (e.g., GOFOR-
WARD, TURNLEFT and TURNRIGHT) in a novel continu-
ous environment to follow a specific path P described by
the instruction I . We consider a more practical but challeng-
ing problem zero-shot VLN, where the agent is expected to
complete the VLN task without requiring path-instruction
annotation. Existing methods attempt to address this chal-
lenging problem by parsing all landmarks in the instruc-
tion and decomposing the VLN task into a series of ob-
ject navigation sub-tasks. Then the agent navigates to these
landmarks sequentially. However, these methods overlook
the specific action demands associated with each landmark
(e.g., “go to”, “go past”), which could potentially lead to
the agent failing to follow the instructions correctly.

To solve this problem, we leverage a large language
model as an instruction parser for parsing all landmarks and
their associated action demands. The instruction is then de-
composed into a sequence of action-specific object naviga-
tion sub-tasks, in which the agent is required to localize the
landmark and navigate based on the specific action demands
associated with that landmark. For executing each sub-tasks

① (GoTo, Object) ② (GoPast, Object)

③ (GoInto, Region) ④ (GoThrough, Region) ⑤ (Exit, Region)

Object Landmark

Agent

Navigation Path

Region Landmark

Figure 3: Visualization of different sub-task types. For dif-
ferent action demands, the landmark is located at a different
position related to the path.

sequentially, an action-aware navigation policy comprising
five action-specific navigators is learned in a zero-shot man-
ner. The general scheme is shown in Figure 2.

3.2. Instruction Parser

The instruction parser aims to transfer a complicated lin-
guistic instruction into several sequential executable action-
specific object navigation sub-tasks [26, 12, 13]. We first
introduce the definition of action-specific object navigation
sub-tasks, followed by a description of how we use LLMs
to decompose an instruction into these sub-tasks.

3.2.1 Action-Specific Object Navigation Sub-Task

Each action-specific object navigation sub-task contains a
landmark and an associated action demand, such as “de-
parting from the bedroom”. The sub-task can be represented
by a template “(ACTION, LANDMARK)”.

We empirically observe that for the same landmark, dif-
ferent action demands result in different spatial relation-
ships between the landmark and navigation path. The land-
mark can be located at the beginning, middle, or end of a
navigation path. For example, the landmark is located at
the end of the path for action demand “go to the landmark”,
while located in the middle for “go past the landmark”. Be-
sides, the landmark could be an object or a region.

Based on these two observations, we summarize
the following basic sub-tasks, namely, “(GOTO, OB-
JECT)”, “(GOPAST, OBJECT)”, “(GOAWAY, OBJECT)”,
and “(GOINTO, REGION)”, “(GOTHROUGH, REGION)”,
“(EXIT, REGION)”. Since the “(GOAWAY, OBJECT)” sub-
task does not indicate a specific navigation destination, it
can cause confusion for the agent during executing. There-
fore, we remove it from the basic sub-task list. An illustra-
tive diagram for these sub-tasks is shown in Figure 3.

3.2.2 Decomposing Instruction into Sub-Tasks

We use the GPT-3 LLM [6] for decomposing an instruc-
tion into a sequence of sub-task described above. We use

ResNet-50

CLIP CLIP

LSTM

“Sofa”

Training Inference

Goal embedding

Goal Image

Observation

Goal Text

Ground

Truth Path

Action

Figure 4: Training and inference pipeline of action-specific
object navigators.

a prompt with several correct instruction parsing examples
for telling GPT-3 the parsing requirements. We have tried
different prompt designs and found that this prompt yields
the best performance (cf. Section 4.3.2). More details about
the prompt design can be referred to Appendix.

As the predicted sub-tasks from GPT-3 are in the free-
form language, we need to map each prediction to the pre-
defined sub-tasks. In most cases, the “ACTION” predictions
made by GPT-3 accurately match one of the “ACTION” in
predefined sub-tasks, and thus we can directly map it to this
sub-task type. In cases where a prediction does not match
any, we follow [28] to perform mapping through semantic
translation. Specifically, we use BERT [16] to encode the
predicted “ACTION” and the “ACTION” in all predefined
sub-tasks. Then we compute the cosine similarity between
them and consider the predefined sub-task with the highest
score as the predicted sub-task.

3.3. Action-Aware Navigation Policy

With the sub-task sequence parsed by LLMs, we learn an
action-aware navigation policy to execute them sequentially
using low-level navigation actions. The policy consists of
five action-specific navigators, each of which is responsible
for a specific sub-task type. We follow ZSON [36] to trans-
form the question of learning such a navigator into learn-
ing an image-goal navigator on a freely collected action-
specific image-path dataset. In this section, we first review
ZSON, followed by a description of how we collect such a
dataset and learn action-specific navigators on this dataset.

3.3.1 Revisiting Zero-Shot Object Navigator ZSON

ZSON [36] is a zero-shot object navigator that enables an
agent to navigate to a landmark without the need for any an-
notations. It achieves this ability through two steps. First,
it generates a dataset of image-path pairs by randomly sam-
pling navigation paths in different environments and captur-
ing a goal image at the end of each path. Second, it encodes
the goal image to a semantic feature space using CLIP [40].
An image-goal navigator is trained on this dataset using a

reinforcement learning algorithm (i.e., DD-PPO [51]) for
navigating to a goal position where the goal image is taken.
The trained image-goal navigator can be used for object
navigation by encoding the object text to the same semantic
feature space using CLIP. Since collecting the image-path
pair data does not need any object annotation or path anno-
tation, ZSON can be trained in a zero-shot manner.

Despite its effectiveness in the object navigation task, it
overlooks the action demands and can only navigate to the
front of the landmark. This cannot meet the requirement of
action-specific object navigation sub-tasks and may lead to
the failure of the VLN task.

3.3.2 Learning Action-Specific Object Navigator

We fine-tune the trained ZSON model on five action-
specific image-path datasets for learning five unique action-
specific navigators, respectively. In each action-specific
dataset, the location of landmarks and paths should re-
veal the characteristic of the corresponding action de-
mand. Next, we introduce the principle for collecting these
datasets. By default, the path is randomly sampled and the
image is captured at the end of the path.

For the GOTO action demands, we directly utilize a
trained ZSON model as a navigator without fine-tuning
since this action demand can be well handled by ZSON.
For the GOPAST action demand that expects the agent to
go to the object and keep going forward past the object, we
capture the goal image in the middle of the path. For the
GOINTO action demand that expects the agent to go cross
a doorway into the target region, we sample the path that
crosses over two regions and sample the goal image at the
end of this path. For the GOTHROUGH action demand that
expects the agent to go from one side to the other side of
a region, we randomly sample the path that starts near one
entrance and ends near the other one of a region. The goal
image is captured in the middle of the path. For the EXIT
action demand, the path is sampled in the same way as the
GOINTO action demand, while the goal image is captured
at the beginning of the path.

We fine-tune the trained ZSON model on these datasets
using the same learning pipeline as ZSON, which is shown
in Figure 4. More details can be found in Appendix.

3.4. Zero-Shot Vision-and-Language Navigation

We use the learned action-aware navigation policy for
executing GPT-3 predicted sub-tasks sequentially. Specifi-
cally, we first identify the current sub-task type and select
the corresponding action-specific navigator for predicting a
low-level action. When the navigator predicts a STOP ac-
tion or exceeds the sub-task maximum step ms, we switch
to the next sub-task. This process repeats until all sub-tasks
are finished or the episode maximum step me is reached.

4. Experiments
4.1. Experimental Setup

Evaluation Datasets and Metrics. We conduct exper-
iments on the validation unseen split of three datasets,
namely R2R-Habitat [33], RxR-Habitat [33], and Fine-
Grained R2R (FG-R2R) [26]. These three datasets contain
1,839, 1,079, and 1,839 validation episodes on 11 scenes in
Matterport3D, respectively. RxR-Habitat contains instruc-
tions in three languages, and we only use the English split
in our experiments. FG-R2R is an extension of R2R [5],
where instructions are chunked into several sub-instructions
and each sub-instruction is labeled with a corresponding
sub-path, resulting in 6,687 sub-instruction-sub-path pairs.
Following the existing works [31, 43, 10], we evaluate
VLN performance using Success Rate (SR) and Success
weighted by inverse Path Length (SPL). Besides, to eval-
uate the generalization ability among datasets, we follow
Dorbala et al. [18] to propose Consistency on SR (CSR)
for computing the relative change in SR among datasets.
Specifically, CSR = 1 − |SRa−SRb|

max{SRa, SRb} × 100%, where
SRa and SRb are success rates for different datasets.

Agent Configurations. Following ZSON [36], the agent
has a height of 1.25m, with a radius of 0.1m. It is equipped
with one 128 × 128 RGB sensor with 90◦ horizontal field of
view. The agent can execute four low-level actions, namely
STOP indicating the end of an episode, FORWARD that
moves itself forward by 0.25 meters and TURNLEFT and
TURNRIGHT that turn itself by 30◦. The ms is empirically
set to 100 and 50 for R2R-Habitat and RxR-Habitat, respec-
tively. The me is set to 500 for all three datasets following
exiting works [10, 43].

Baselines. We decompose the instruction into an object
navigation sub-task sequence using GPT-3 and execute
these sub-tasks sequentially using four zero-shot object nav-
igation methods.
• CLIP-Nav [18] is designed for navigating among dis-

crete navigable nodes. The agent uses CLIP to determine
which adjacent node has the highest possibility of con-
taining landmarks and then moves to this node. We adapt
it to continuous environments using a waypoint naviga-
tion algorithm. More details can be found in Appendix.

• Seq CLIP-Nav [18] is an extended version of CLIP-Nav
with an additional backtracking mechanism, which al-
lows the agent to go back to the previous location if it
cannot find the landmarks for several steps.

• CoW [20] uses CLIP gradient for object localization and
a path-planning algorithm for action determination.

• ZSON [36] uses the CLIP for encoding both image and
landmark text to the same semantic feature space and then
trains an image navigator for object navigation.

Method Extra Info.
R2R-Habitat RxR-Habitat

CSR
SR SPL SR SPL

Supervised
Seq2Seq [31] Depth 25.0% 22.0% - - -
LAW [43] Depth 35.0% 31.0% 10.0% 9.0% 28.6%
WS-MGMap [10] Depth 38.9% 34.3% 15.0% 12.1% 38.6%

Zero-Shot

Random - 0.0% 0.0% 6.0% 6.0% 0.0%
CLIP-Nav [18] Panoramic 5.6% 2.9% 9.8% 3.2% 57.4%
Seq CLIP-Nav [18] Panoramic 7.1% 3.7% 9.1% 3.3% 77.8%
Cow [20] Depth 7.8% 5.8% 7.9% 6.1% 98.3%
ZSON [36] - 19.3% 9.3% 14.2% 4.8% 73.6%

A2Nav (Ours) - 22.6% 11.1% 16.8% 6.3% 74.3%

Table 1: Comparisons with zero-shot and supervised methods on VLN datasets. The depth and panoramic in “Extra Info.”
column indicate that these methods depend on an extra depth sensor or panoramic sensor.

4.2. Zero-Shot Vision-and-Language Navigation

We compare our A2Nav with existing zero-shot navi-
gation methods on R2R-Habitat and RxR-Habitat datasets.
Besides, we compare our method with supervised learning
methods and study whether our zero-shot method is able to
outperform supervised learning methods when the number
of annotated data is limited.

4.2.1 Comparisons with Zero-Shot Methods

In Table 1, leveraging random actions failed to reach the
goal position in all episodes on R2R-Habitat dataset, which
demonstrates that zero-shot VLN is a challenging problem.
On RxR-Habitat, random walking gets a 6% success rate
because almost 6% of episodes have a goal position within
the success distance of 3 meters. These episodes are judged
to be successful even if the agent simply remains station-
ary. Compared with random walking, all other zero-shot
navigation methods have a significant improvement, while
our A2Nav performs the best on two benchmark datasets,
outperforming CLIP-Nav, Seq CLIP-Nav, CoW and ZSON
by 17.0%, 15.5%, 14.8%, and 3.3%, respectively on R2R-
Habitat, and by 7.0%, 7.7%, 8.9%, and 2.6%, respectively
on RxR-Habitat in terms of success rate. We provide a more
detailed analysis of these zero-shot methods below.

Existing zero-shot navigation methods can be catego-
rized into two groups: 1) using CLIP to localize the land-
mark and then using a path-planning algorithm for naviga-
tion (i.e., CoW, CLIP-Nav, and Seq CLIP-Nav); 2) using
CLIP to encode the landmark and then learning a policy for
navigation (i.e., ZSON). In Table 1, the former approaches
show inferior performance. They struggle to determine the
exploration direction when the landmark is out of the field
of view. We hypothesize this is due to the difficulty of CLIP
in utilizing room layout to infer the possible location of
landmarks. ZSON eases this problem by training a navi-

0 (0%) 2709 (25%) 5418 (50%) 8128 (75%) 10873 (100%)
Number of Training Episodes (Pecentage)

0

10

20

30

Su
cc

es
s R

at
e

(%
) 22.6 (Zero-Shot)

+22.6

+5.91

0.0

16.69
21.04

24.14 27.07

11.5

17.6
19.9 21.15

A²Nav (Ours)
Seq2Seq
WS-MGMap

Figure 5: Comparison with the supervised learning methods
that are trained on partial training data.

gation policy that incorporates room layout commonsense
to identify the most likely area to find the landmark. Our
A2Nav surpasses these methods by incorporating action-
aware navigation skills.

4.2.2 Comparisons with Supervised Learning Methods

We compare our method with three supervised VLN meth-
ods, namely a vanilla Seq2Seq [33] which is often consid-
ered as a baseline method, LAW [43] and WS-MGMap [10]
which are current state-of-the-art methods. It is worth not-
ing that all these supervised methods take depth images and
larger 224 × 224 RGB images as input and require about
10K annotated episodes for supervised training.

On R2R-Habitat, our zero-shot A2Nav achieves compa-
rable performance in terms of SR (22.6% vs.25.0%) com-
pared with the vanilla Seq2Seq in Table 1. Upon com-
parison with the state-of-the-art supervised method WS-
MGMap, which utilizes a multi-granularity map for envi-
ronment representation, our zero-shot approach exhibits a
relatively large performance gap. However, we believe that
incorporating a map representation into our action-aware

GO TO GO PAST GO INTO GO THROUGH EXIT
R2R-Habitat RxR-Habitat

SR SPL SR SPL

! % % % % 19.3% 9.3% 14.2% 4.8%
! ! % % % 20.9% 9.9% 14.8% 5.1%
! ! ! % % 21.5% 9.8% 14.7% 5.2%
! ! ! ! % 22.3% 10.7% 16.7% 6.1%
! ! ! ! ! 22.6% 11.1% 16.8% 6.3%

Table 2: Ablation study on action-aware navigation policy with different combinations of action-specific navigators.

Methods
GO TO GO PAST GO INTO GO THROUGH EXIT

SR SPL SR SPL SR SPL SR SPL SR SPL

Random 4.3% 4.3% 0.9% 0.9% 4.1% 4.1% 2.6% 2.6% 4.4% 4.4%
CLIP-Nav [18] 16.7% 12.2% 11.4% 7.4% 15.1% 10.2% 13.8% 9.7% 15.3% 9.2%
Seq CLIP-Nav [18] 18.3% 12.7% 10.3% 6.8% 15.3% 9.6% 12.8% 8.6% 16.1% 9.6%
CoW [20] 8.8% 8.1% 9.0% 8.4% 7.5% 6.5% 7.8% 7.0% 19.2% 16.1%
ZSON [36] 13.8% 8.2% 10.0% 6.3% 13.2% 6.9% 13.5% 8.1% 13.0% 7.0%

A2Nav (Ours) 13.8% 8.2% 15.0% 11.7% 18.4% 12.1% 16.1% 11.0% 41.1% 36.9%

Table 3: Comparisons of different zero-shot navigators on Fine-Grained R2R datasets.

navigation policy may enhance its performance and narrow
this gap. we leave this as a direction for future work

On RxR-Habitat, A2Nav outperforms all supervised
learning methods in terms of SR, increasing it from 15.0%
to 16.8%. Besides, our method achieves a higher Consis-
tency on the SR score, indicating that A2Nav is more effec-
tive at generalizing to different datasets and can adapt more
easily to varying environments. This is a crucial advantage
in real-world applications where the agent must navigate
through diverse and constantly changing environments.

We also compare our A2Nav with supervised methods
that trained on partial s. For fair comparison, we re-
implement two supervised VLN methods Seq2Seq [31] and
WS-MGMap [10] without augmented training data and tak-
ing input 128×128 image, following our default setting. In
Figure 5, our A2Nav outperforms the Seq2Seq even using
all training episodes on R2R-Habitat. Compared with the
state-of-the-art method with a semantic top-down map as
input, our A2Nav still yields better results if less than 50%
training episodes are available for it.

4.3. Ablation Studies

4.3.1 Effectiveness of Action-Aware Navigation Policy

To verify the effectiveness of each navigator of our action-
aware navigation policy, we create multiple navigation pol-
icy variants with different combinations of navigators and
evaluate them on the VLN task. By default, the sub-task is
executed by the GOTO navigator if its corresponding navi-
gator is not included. In Table 2, the navigation policy that

incorporates more sub-task navigators consistently achieves
better results on both the R2R-Habitat and RxR-Habitat
datasets in terms of SR and SPL. We attribute this improve-
ment to the fact that the sub-task navigators aid the agent
in comprehending the action requirements and navigating
to the target location of the current sub-task. Consequently,
the agent locates the next landmark more efficiently, leading
to an increased success rate in navigation.

We also evaluate its performance on different types of
sub-task. To create an evaluation dataset, we parse the sub-
instruction in FG-R2R into a “(ACTION, LANDMARK)”
sub-task using the instruction parser in Section 3.2, and con-
sider the sub-path as ground truth path for this sub-task. In
Table 3, our navigation policy outperforms other zero-shot
object navigation methods for 4 out of 5 sub-task types. No-
tably, for the “(EXIT, REGION)” sub-task, A2Nav outper-
forms all other navigators by a large margin, increasing the
SR from 19.2% to 41.1%. We attribute this improvement
to the fact that the exiting navigators can only move toward
the landmarks, which is opposite to the expected navigation
direction. As for “(GOTO, OBJECT)” sub-task, we directly
use the trained ZSON and thus we achieve the same perfor-
mance as ZSON.

4.3.2 Comparisons on Different Instruction Parser

The instruction parser aims to decompose the natural hu-
man instruction into several action-specific object naviga-
tion sub-tasks. In this paper, we use a GPT-3 LLM as the
instruction parser due to its advanced reasoning ability. We

Bedroom

Entryway

KitchenKitchen

Exit (Bedroom)

Entryway

Bathroom

(a) A2 Nav (Ours) (b) ZSON

1.[Exit] the bedroom.

2.[GoThrough] the entryway.

3.[GoThrough] the kitchen.

4.[GoTo] the bathroom.

Subtasks:

Leave the bedroom, turn left, walk

through the entryway, turn right,

walk through the kitchen, then wait

in front of the bathroom.

Instruction:

Shortest Path Start Position

Goal PositionNavigation Path

Figure 6: Qualitative example of (a) successful navigation using our A2Nav and (b) corresponding navigation result using
ZSON. Paths with different colors (from light to dark) belong to sequential sub-tasks.

Instruction
Parser Prompt SR SPL

Heuristic - 17.1% 9.1%

GPT-3 Sub-Task Definition 8.6% 3.8%
GPT-3 Parsing Examples 22.6% 11.1%
GPT-3 Definition + Examples 19.0% 8.5%

Table 4: Comparisons of different instruction parsers. The
GPT-3 with appropriate prompts performs the best.

also implement a heuristic variant that parses the instruction
based on grammatical rules. Specifically, we follow FG-
R2R [26] to chunk the instruction into several parts based
on the grammatical relations between words. Each part is an
independent navigation task. The verbs and the remaining
words in a part are considered the action and landmark of a
sub-task, respectively. We then map these free-form actions
to one of five action-specific object navigation sub-task us-
ing semantic translation [28]. In Table 4, GPT-3 with appro-
priate prompts significantly outperforms the heuristic vari-
ant on R2R-Habitat dataset. We attribute this to the in-depth
reasoning ability of GPT-3, which helps to figure out the
correct action demands and temporal nature of landmarks
from complicated long instructions.

We also evaluate the effect of different prompts for GPT-
3. To tell the GPT-3 about the instruction parsing require-
ment, we have tried three prompt designs: a brief descrip-
tion of the sub-task definition, a collection of instruction
parsing examples, and a combination of both. In Table 4,
with several correct parsing examples as prompt, GPT-3
performs the best. We attribute this to its in-context learning
ability [23]. We also observe that providing a brief sub-task
description decreases performance. We hypothesize this is
because such descriptions are often not detailed enough to
cover all possible scenarios, thereby potentially misleading

GPT-3 in its understanding of each sub-task

4.4. Visualization Results

In Figure 6, we provide qualitative visualization results
on R2R-Habitat. We visualize the trajectory of each sub-
tasks with different colors. Figure 6 (a) shows success-
ful navigation to a bathroom according to the instruction.
Based on our action-aware navigation policy, the agent finds
the exit of the bedroom to go out, and then goes through the
entryway and the kitchen, straightly going to the bathroom.
In contrast, in Figure 6 (b), another agent with ZSON object
navigation policy directly goes to the bed that satisfies the
“bedroom” landmark in the beginning, leading to an entirely
opposite direction. Subsequently, the ZSON agent goes to
the entryway and stops at the near end of the kitchen, and
then struggles in finding the bathroom in the wrong place.
This indicates that our proposed action-aware navigation
policy benefits from taking into account action demands in
the instruction.

5. Conclusion

In this paper, we take into account the instruction ac-
tion demands and decompose the VLN task into a sequence
of action-specific object navigation sub-tasks. To execute
these sub-tasks, we further propose an action-aware navi-
gation policy that learns different navigation abilities with-
out requiring any manual path-instruction annotation. The
proposed A2Nav achieves the best zero-shot VLN perfor-
mance on two benchmark datasets (i.e., R2R-Habitat and
RxR-Habitat) and outperforms the state-of-the-art super-
vised learning methods on RxR-Habitat. Furthermore, our
A2Nav is able to more accurately follow navigation instruc-
tions that contain specific action demands, demonstrating
its potential for the scenario that needs human-robot com-
munication and interaction.

Limitations and Future Works. The proposed A2Nav
achieves promising ZS-VLN performance without requir-
ing any path-instruction annotation. However, it does re-
quire room region bounding box annotations for collecting
action-specific datasets to train the navigators. This may
limit our method for training on the environment without
the region annotation. To address this limitation, future
work could explore leveraging well-studied scene under-
standing models [38, 54] to automatically infer the room
region bounding boxes. By doing so, it is possible to train
the action-specific navigators on a larger-scale dataset, po-
tentially leading to improved performance.

References
[1] Sanyam Agarwal, Devi Parikh, Dhruv Batra, Peter Ander-

son, and Stefan Lee. Visual landmark selection for gener-
ating grounded and interpretable navigation instructions. In
CVPR workshop on Deep Learning for Semantic Visual Nav-
igation, volume 2, 2019. 2

[2] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Cheb-
otar, Omar Cortes, Byron David, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alexander Herzog, Daniel
Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan,
Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jes-
month, Nikhil J. Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Kuang-Huei Lee, Sergey Levine, Yao Lu,
Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao,
Kanishka Rao, Jarek Rettinghouse, Diego Reyes, Pierre Ser-
manet, Nicolas Sievers, Clayton Tan, Alexander Toshev, Vin-
cent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, and
Mengyuan Yan. Do as I can, not as I say: Grounding lan-
guage in robotic affordances. CoRR, abs/2204.01691, 2022.
1

[3] Ziad Al-Halah, Santhosh K. Ramakrishnan, and Kristen
Grauman. Zero experience required: Plug & play modular
transfer learning for semantic visual navigation. In CVPR,
pages 17010–17020, 2022. 2, 3

[4] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark
Johnson, Niko Sünderhauf, Ian D. Reid, Stephen Gould, and
Anton van den Hengel. Vision-and-language navigation: In-
terpreting visually-grounded navigation instructions in real
environments. In CVPR, pages 3674–3683, 2018. 2

[5] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark
Johnson, Niko Sünderhauf, Ian D. Reid, Stephen Gould, and
Anton van den Hengel. Vision-and-language navigation: In-
terpreting visually-grounded navigation instructions in real
environments. In CVPR, pages 3674–3683, 2018. 5

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-

ford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In NeurIPS, 2020. 2, 3, 4

[7] Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta,
and Ruslan Salakhutdinov. Object goal navigation using
goal-oriented semantic exploration. In NeurIPS, 2020. 3

[8] Kevin Chen, Junshen K. Chen, Jo Chuang, Marynel
Vázquez, and Silvio Savarese. Topological planning with
transformers for vision-and-language navigation. In CVPR,
pages 11276–11286, 2021. 2

[9] Peihao Chen, Dongyu Ji, Kunyang Lin, Weiwen Hu, Wen-
bing Huang, Thomas H. Li, Mingkui Tan, and Chuang
Gan. Learning active camera for multi-object navigation.
NeurIPS, 2022. 3

[10] Peihao Chen, Dongyu Ji, Kunyang Lin, Runhao Zeng,
Thomas H. Li, Mingkui Tan, and Chuang Gan. Weakly-
supervised multi-granularity map learning for vision-and-
language navigation. In NeurIPS, 2022. 1, 2, 3, 5, 6, 7

[11] Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi,
Cordelia Schmid, and Ivan Laptev. Think global, act local:
Dual-scale graph transformer for vision-and-language navi-
gation. In CVPR, pages 16516–16526, 2022. 2

[12] Zhenfang Chen, Jiayuan Mao, Jiajun Wu, Kwan-Yee Ken-
neth Wong, Joshua B Tenenbaum, and Chuang Gan. Ground-
ing physical concepts of objects and events through dynamic
visual reasoning. 2021. 4

[13] Zhenfang Chen, Kexin Yi, Yunzhu Li, Mingyu Ding, Anto-
nio Torralba, Joshua B Tenenbaum, and Chuang Gan. Com-
phy: Compositional physical reasoning of objects and events
from videos. In ICLR, 2021. 4

[14] Zhenfang Chen, Qinhong Zhou, Yikang Shen, Yining Hong,
Hao Zhang, and Chuang Gan. See, think, confirm: Inter-
active prompting between vision and language models for
knowledge-based visual reasoning. arXiv, 2023. 3

[15] Loh Poh Chuan, Ayob Johari, Mohd Helmy Abd Wahab,
Danial Md Nor, Nik Shahidah Afifi Md Taujuddin, and
Mohd Erdi Ayob. An rfid warehouse robot. In 2007 Inter-
national Conference on Intelligent and Advanced Systems,
pages 451–456. IEEE, 2007. 1

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: pre-training of deep bidirectional trans-
formers for language understanding. In NAACL-HLT, pages
4171–4186, 2019. 2, 4

[17] Mingyu Ding, Yan Xu, Zhenfang Chen, David Daniel Cox,
Ping Luo, Joshua B Tenenbaum, and Chuang Gan. Embod-
ied concept learner: Self-supervised learning of concepts and
mapping through instruction following. In CoRL, 2022. 2

[18] Vishnu Sashank Dorbala, Gunnar A. Sigurdsson, Robinson
Piramuthu, Jesse Thomason, and Gaurav S. Sukhatme. Clip-
nav: Using CLIP for zero-shot vision-and-language naviga-
tion. CoRR, abs/2211.16649, 2022. 2, 3, 5, 6, 7, 14

[19] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach,
Jacob Andreas, Louis-Philippe Morency, Taylor Berg-
Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell.
Speaker-follower models for vision-and-language naviga-
tion. In NeurIPS, pages 3318–3329, 2018. 2

[20] Samir Yitzhak Gadre, Mitchell Wortsman, Gabriel Ilharco,
Ludwig Schmidt, and Shuran Song. CLIP on wheels: Zero-

shot object navigation as object localization and exploration.
CoRR, abs/2203.10421, 2022. 2, 3, 5, 6, 7, 14

[21] Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca,
Martin Schrimpf, James Traer, Julian De Freitas, Jonas Ku-
bilius, Abhishek Bhandwaldar, Nick Haber, et al. Threed-
world: A platform for interactive multi-modal physical sim-
ulation. arXiv preprint arXiv:2007.04954, 2020. 1

[22] Chuang Gan, Siyuan Zhou, Jeremy Schwartz, Seth Alter,
Abhishek Bhandwaldar, Dan Gutfreund, Daniel LK Yamins,
James J DiCarlo, Josh McDermott, Antonio Torralba, et al.
The threedworld transport challenge: A visually guided task-
and-motion planning benchmark towards physically realistic
embodied ai. In 2022 International Conference on Robotics
and Automation (ICRA), pages 8847–8854. IEEE, 2022. 1

[23] Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory
Valiant. What can transformers learn in-context? a case
study of simple function classes. CoRR, abs/2208.01066,
2022. 8

[24] Georgios Georgakis, Karl Schmeckpeper, Karan Wanchoo,
Soham Dan, Eleni Miltsakaki, Dan Roth, and Kostas Dani-
ilidis. Cross-modal map learning for vision and language
navigation. In CVPR, pages 15439–15449, 2022. 1, 2, 3

[25] Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, and
Jianfeng Gao. Towards learning a generic agent for vision-
and-language navigation via pre-training. In CVPR, pages
13134–13143, 2020. 2

[26] Yicong Hong, Cristian Rodriguez Opazo, Qi Wu, and
Stephen Gould. Sub-instruction aware vision-and-language
navigation. In EMNLP, pages 3360–3376, 2020. 4, 5, 8

[27] Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez
Opazo, and Stephen Gould. VLN BERT: A recurrent vision-
and-language BERT for navigation. In CVPR, pages 1643–
1653, 2021. 2

[28] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor
Mordatch. Language models as zero-shot planners: Extract-
ing actionable knowledge for embodied agents. In ICML,
pages 9118–9147, 2022. 4, 8

[29] Jacob Krantz, Aaron Gokaslan, Dhruv Batra, Stefan Lee, and
Oleksandr Maksymets. Waypoint models for instruction-
guided navigation in continuous environments. In ICCV,
pages 15142–15151, 2021. 2, 3

[30] Jacob Krantz, Aaron Gokaslan, Dhruv Batra, Stefan Lee, and
Oleksandr Maksymets. Waypoint models for instruction-
guided navigation in continuous environments. In ICCV,
pages 15142–15151, 2021. 2

[31] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Ba-
tra, and Stefan Lee. Beyond the nav-graph: Vision-and-
language navigation in continuous environments. In ECCV,
pages 104–120, 2020. 1, 5, 6, 7

[32] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Ba-
tra, and Stefan Lee. Beyond the nav-graph: Vision-and-
language navigation in continuous environments. In ECCV,
pages 104–120, 2020. 2

[33] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Ba-
tra, and Stefan Lee. Beyond the nav-graph: Vision-and-
language navigation in continuous environments. In ECCV,
pages 104–120, 2020. 5, 6

[34] C Liang, KJ Chee, Y Zou, H Zhu, A Causo, S Vidas, T Teng,
IM Chen, KH Low, and CC Cheah. Automated robot picking
system for e-commerce fulfillment warehouse application. In
The 14th IFToMM World Congress, 2015. 1

[35] Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan AlRegib,
Zsolt Kira, Richard Socher, and Caiming Xiong. Self-
monitoring navigation agent via auxiliary progress estima-
tion. In ICLR, 2019. 2

[36] Arjun Majumdar, Gunjan Aggarwal, Bhavika Devnani, Judy
Hoffman, and Dhruv Batra. ZSON: zero-shot object-goal
navigation using multimodal goal embeddings. In NeurIPS,
2022. 2, 3, 4, 5, 6, 7, 12, 14, 16

[37] So Yeon Min, Yao-Hung Hubert Tsai, Wei Ding, Ali Farhadi,
Ruslan Salakhutdinov, Yonatan Bisk, and Jian Zhang. Ob-
ject goal navigation with end-to-end self-supervision. CoRR,
abs/2212.05923, 2022. 3

[38] Senthil Purushwalkam, Sebastia Vicenc Amengual Gari,
Vamsi Krishna Ithapu, Carl Schissler, Philip Robinson, Ab-
hinav Gupta, and Kristen Grauman. Audio-visual floorplan
reconstruction. In ICCV, pages 1163–1172, 2021. 9

[39] Yuankai Qi, Zizheng Pan, Yicong Hong, Ming-Hsuan Yang,
Anton van den Hengel, and Qi Wu. Know what and know
where: An object-and-room informed sequential BERT for
indoor vision-language navigation. CoRR, abs/2104.04167,
2021. 2

[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In ICML, pages
8748–8763, 2021. 2, 3, 4, 14

[41] Santhosh Kumar Ramakrishnan, Devendra Singh Chap-
lot, Ziad Al-Halah, Jitendra Malik, and Kristen Grauman.
PONI: potential functions for objectgoal navigation with
interaction-free learning. In CVPR, pages 18868–18878,
2022. 3

[42] Santhosh Kumar Ramakrishnan, Aaron Gokaslan, Erik Wij-
mans, Oleksandr Maksymets, Alexander Clegg, John Turner,
Eric Undersander, Wojciech Galuba, Andrew Westbury, An-
gel X. Chang, Manolis Savva, Yili Zhao, and Dhruv Batra.
Habitat-matterport 3d dataset (HM3D): 1000 large- scale 3d
environments for embodied AI. In NeurIPS Datasets and
Benchmarks, 2021. 12

[43] Sonia Raychaudhuri, Saim Wani, Shivansh Patel, Unnat Jain,
and Angel X. Chang. Language-aligned waypoint (LAW)
supervision for vision-and-language navigation in continu-
ous environments. In EMNLP, pages 4018–4028, 2021. 1,
5, 6

[44] Manolis Savva, Jitendra Malik, Devi Parikh, Dhruv Batra,
Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik
Wijmans, Bhavana Jain, Julian Straub, Jia Liu, and Vladlen
Koltun. Habitat: A platform for embodied AI research. pages
9338–9346, 2019. 2

[45] Dhruv Shah, Blazej Osinski, Brian Ichter, and Sergey
Levine. Lm-nav: Robotic navigation with large pre-
trained models of language, vision, and action. volume
abs/2207.04429, 2022. 2, 3

[46] Hao Tan, Licheng Yu, and Mohit Bansal. Learning to nav-
igate unseen environments: Back translation with environ-
mental dropout. In NAACL-HLT, pages 2610–2621, 2019.
2

[47] Hanqing Wang, Wei Liang, Jianbing Shen, Luc Van Gool,
and Wenguan Wang. Counterfactual cycle-consistent learn-
ing for instruction following and generation in vision-
language navigation. In CVPR, pages 15450–15460, 2022.
2

[48] Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao,
Dinghan Shen, Yuan-Fang Wang, William Yang Wang, and
Lei Zhang. Reinforced cross-modal matching and self-
supervised imitation learning for vision-language navigation.
In CVPR, pages 6629–6638, 2019. 2

[49] Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao,
Dinghan Shen, Yuan-Fang Wang, William Yang Wang, and
Lei Zhang. Reinforced cross-modal matching and self-
supervised imitation learning for vision-language navigation.
In CVPR, pages 6629–6638, 2019. 2

[50] Xin Wang, Wenhan Xiong, Hongmin Wang, and
William Yang Wang. Look before you leap: Bridging
model-free and model-based reinforcement learning for
planned-ahead vision-and-language navigation. In ECCV,
pages 38–55, 2018. 2

[51] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Ir-
fan Essa, Devi Parikh, Manolis Savva, and Dhruv Batra. DD-
PPO: learning near-perfect pointgoal navigators from 2.5 bil-
lion frames. In ICLR, 2020. 5, 12

[52] Karmesh Yadav, Ram Ramrakhya, Arjun Majumdar,
Vincent-Pierre Berges, Sachit Kuhar, Dhruv Batra, Alexei
Baevski, and Oleksandr Maksymets. Offline visual rep-
resentation learning for embodied navigation. CoRR,
abs/2204.13226, 2022. 3

[53] Georgios A. Zachiotis, George Andrikopoulos, Randy
Gornez, Keisuke Nakamura, and George Nikolakopoulos. A
survey on the application trends of home service robotics. In
ROBIO, pages 1999–2006, 2018. 1

[54] Delu Zeng, Minyu Liao, Mohammad Tavakolian, Yulan
Guo, Bolei Zhou, Dewen Hu, Matti Pietikäinen, and Li Liu.
Deep learning for scene classification: A survey. CoRR,
abs/2101.10531, 2021. 9

[55] Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou,
Yilun Du, Joshua B Tenenbaum, Tianmin Shu, and Chuang
Gan. Building cooperative embodied agents modularly with
large language models. arXiv preprint arXiv:2307.02485,
2023. 2

[56] Gengze Zhou, Yicong Hong, and Qi Wu. Navgpt: Explicit
reasoning in vision-and-language navigation with large lan-
guage models. arXiv preprint arXiv:2305.16986, 2023. 3

[57] Fengda Zhu, Yi Zhu, Xiaojun Chang, and Xiaodan Liang.
Vision-language navigation with self-supervised auxiliary
reasoning tasks. In CVPR, pages 10009–10019, 2020. 2

APPENDIX

In the supplementary, we provide more implementation
details and more visualization results of our method. We
organize the supplementary as follows.

• In Section A, we present more details on action-specific
image-path dataset collection.

• In Section B, we present more details on action-specific
navigator training and inference.

• In Section C, we present more details on prompt design
for the instruction parser.

• In Section D, we present more details on zero-shot navi-
gation baselines.

• In Section E, we present more visualization results.

A. More Details on Action-Specific Image-Path
Dataset Collection

For learning a navigator for executing each action de-
mand, we need to collect an action-specific image-path
dataset for fine-tuning a trained ZSON model. In Section
3.3.2 of the paper, we have introduced the basic principle for
collecting the episodes (i.e., the path and the corresponding
goal image) in the dataset. In this section, we present more
data collection details.

• GOPAST Dataset. We randomly sample two points
whose geometric distance is longer than 1.5m, and con-
sider the shortest navigation path as the ground truth path.
The goal image is sampled in the middle of the path facing
the direction of the agent’s advancement. We introduce
some randomness to the angle by jittering it by ±45◦.

• GOINTO Dataset. We randomly choose a region from
the scene. The start point is sampled near the entrance
of this region (the geometric distance is less than 1.5m).
The goal point is sampled randomly inside this region.
The goal image is taken in a random direction at the goal
point.

• GOTHROUGH Dataset. We randomly select a region
with two different entrances and sample a random point
near each entrance respectively to form a path. The geo-
metric distance from the start or end point to the entrance
is less than 1.5m. Goal image is taken in the middle of the
path and faces the direction of the agent’s advancement.

• EXIT Dataset. The ground truth path of the EXIT action
is similar to the GOINTO action besides switching the po-
sition of start point and goal point.

Occupancy Top-down Map
Region Bounding Box
Entrance

Figure 7: Obtaining entrance positions from the intersec-
tions between regions and top-down map.

We utilize room region bounding box annotations for ob-
taining the entrance position of regions. Specifically, we
consider the intersection between the room region bound-
ing box and the occupancy top-down map as the entrance
of a region. An example is shown in Figure 7. Since col-
lecting GOINTO, GOTHROUGH, and EXIT datasets requires
the entrance position, we collect these three datasets from
131 scenes in HM3D [42] dataset that have region bound-
ing box annotations. For the GOPAST dataset, we collect
from all 800 scenes in the train split of HM3D. We sample
9,000 image-path pairs from each scene.

B. More Details on Action-Specific Navigator
Training and Inference

We fine-tune a trained ZSON model on the action-
specific dataset for learning an action-specific navigator.
We use the ZSON model that is trained on agent configu-
ration A described by Majumdar et al. [36], i.e., the agent
has a height of 1.25m, with a radius of 0.1m and is equipped
with one 128 × 128 RGB sensor with 90◦ horizontal field of
view. We fine-tune this model using a reinforcement learn-
ing algorithm (i.e., DD-PPO [51]) for 100M steps with the
same navigation reward as ZSON. This reward encourages
the agent to go to the end of the path in an episode and look
toward the goal image:

rt = rsuccess + rangle−success −∆dtg −∆atg + rslack (1)

where rsuccess = 5 if STOP is predicted when the agent
is within 1m of the goal position, rangle−success = 5 if the
agent is within 1m of the goal position and within 25◦ of
the goal orientation (and 0 otherwise). Besides, ∆dtg is
the change in the agent’s distance-to-goal, and ∆atg is the
change in the agent’s angle-to-goal. ∆atg is set to 0 if the
agent is not within a circle of 1m radius from the goal posi-
tion. We also use a slack reward rslack = −0.01 to encour-
age the agent to reach the goal as soon as possible.

After fine-tuning, we use the trained navigator for exe-
cuting a sub-task. Specifically, we feed the landmark (i.e.,
text description of an object or a region) to the CLIP for

Q: You are a robot walking in a house. You should parse the navigation instruction into several subtasks and then execute them one by one.

Each subtask consists of an [action] and a {landmark}. Action should be chosen from [turn left], [turn right], [go to], [go past], [go into], [go
through], and [exit]. Landmark should be {a specific object} or {a region}. Here is the definition of each action:
[go to] means go to the front of {a specific object};
[go past] means go to {a specific object} and then go pass it;
[go into] means go into {a region};
[go through] means walk along {a region} or through {a region};
[exit] means find a door and go out of {a region}.

Now help me parse the following instruction: "Exit the bedroom and turn left. Walk straight passing the gray couch and stop near the rug. "

A: Let's think step by step:
Subtask 1: [exit] the {bedroom};
Subtask 2: [turn left];
Subtask 3: [go past] the {gray couch};
Subtask 4: [go to] the {rug}.

Figure 8: An example of prompt design 1: a brief description of sub-task.

Q: Parse the instruction using the following subtasks: 1. {go to} [landmark], 2. {go past} [landmark], 3. {turn left}, 4. {turn right}, 5. {go
through} [region], 6. {go into} [region], 7. {exit} [region], 8. {stop}.

Here are several examples.
(1) Instruction: "Walk into the hallway and turn left. Walk to the left of the railing and across the hall past the plant. Stop to the left of the
stairs.", and the subtasks should be:
1. [go into] {the hallway}.
2. [turn left].
3. [go to] {the left of therailing}.
4. [go past] {the plant}.
5. [go to] {the left of the stairs}.
6. [stop].
……(with another 4 examples)

Now help me parse the following instruction: "Exit the bedroom and turn left. Walk straight passing the gray couch and stop near the rug. "

A: Let’s think step by step:
1. [exit] {the bedroom}.
2. [turn left].
3. [go past] {the gray couch}.
4. [go to] {the rug}.
5. [stop].

Figure 9: An example of prompt design 2: a collection of parsing examples. This prompt design performs the best.

extracting goal embedding. The navigator take the current
RGB observation and the goal embedding as input for pre-
dicting a low-level action for this sub-task.

C. More Details on Prompt Design for the In-
struction Parser

We have tried three prompt designs for parsing instruc-
tions using the large language model GPT-3.

• Prompt Design 1: a brief description of each sub-task
definition.

• Prompt Design 2: a collection of instruction parsing ex-
amples

• Prompt Design 3: a combination of both brief descrip-
tion and examples

Experimental results in Table 4 in the paper show that the
second prompt design performs the best. We show the ex-
amples of these prompt designs in Figures 8, 9 and 10,
respectively. We mark the GPT-3 output in brown color.

Q: You are a robot walking in a house. You should parse the navigation instruction into several subtasks and then execute them one by one.

Each subtask consists of an [action] and a {landmark}. Action should be chosen from [turn left], [turn right], [go to], [go past], [go into], [go
through], and [exit]. Landmark should be {a specific object} or {a region}. Here is the definition of each action:
[go to] means go to the front of {a specific object};
[go past] means go to {a specific object} and then go pass it;
[go into] means go into {a region};
[go through] means walk along {a region} or through {a region};
[exit] means find a door and go out of {a region}.

Here are several examples.
(1) Instruction: "Walk into the hallway and turn left. Walk to the left of the railing and across the hall past the plant. Stop to the left of the
stairs.", and the subtasks should be:
1. [go into] {the hallway}.
2. [turn left].
3. [go to] {the left of therailing}.
4. [go past] {the plant}.
5. [go to] {the left of the stairs}.
6. [stop].
……(with another 4 examples)

Now help me parse the following instruction: " Exit the bedroom and turn left. Walk straight passing the gray couch and stop near the rug. "

A: Let’s think step by step :
1. [exit] {the bedroom}.
2. [turn left].
3. [go past] {the gray couch}.
4. [go to] {the rug}.
5. [stop].

Figure 10: An example of prompt design 3: a combination of both sub-task definition description and examples.

D. More Details on Zero-Shot Navigation Base-
lines

We decompose the instruction into an object navigation
sub-task sequence using GPT-3 and execute these sub-tasks
sequentially using four zero-shot object navigation meth-
ods.

• CLIP-Nav [18] is designed for navigating among dis-
crete navigable nodes. The agent uses CLIP to determine
which adjacent node has the highest possibility of con-
taining landmarks and then moves to this node. To adapt
it to continuous environments, we capture 4 RGB im-
ages uniformly in different directions and use CLIP [40]
to select one image that has the highest possibility of
containing landmarks. Then, we randomly set a way-
point in that direction and use a path-planing algorithm
to plan low-level actions for navigating to the waypoint.
If the CLIP softmax score is higher than the thresh-
old of 0.8, we switch to the next object navigation sub-
task. For implementation convenience, we use the “short-
est path follower” API in the Habitat simulator for path
planning, which assumes the complete occupancy top-
down map is available.

• Seq CLIP-Nav [18] is an extended version of CLIP-Nav
with an additional backtracking mechanism, which al-
lows the agent to go back to the previous location if it
cannot find the landmarks for several steps. In our im-
plementation, we directly set the agent to the position 15
step before for performing backtracking.

• CoW [20] uses CLIP gradient for object localization
and a path-planning algorithm for action determination.
For implementation convenience, we use the “short-
est path follower” API in the Habitat simulator for path
planning, which assumes the complete occupancy top-
down map is available. Even using the oracle occupancy
information, our A2Nav still performs better than this
baseline.

• ZSON [36] uses the CLIP for encoding both image and
landmark text to the same semantic feature space and then
trains an image navigator for object navigation. We use
the model trained on the HM3D dataset using the config
A setting.

Kitchen

Refrigerator

& Sink

Door

Door

(a) A2 Nav (Ours) (b) ZSON

1.[GoThrough] the kitchen.

2.[GoPast] the refrigerator and

utility sink.

3.[GoThrough] the sliding

door.

Subtasks:

Walk straight through the kitchen.

Past the refrigerator and utility sink.

Walk through the sliding door.

Instruction:

Shortest Path Start Position

Goal PositionNavigation Path

Figure 11: Visualization of the navigation path. Our method successfully goes through the kitchen, while the baseline fails
to do it.

(b) ZSON(a) A2 Nav (Ours)
Exit (Bedroom)

GoPast(Stair)

Doorway

1.[Exit] the bedroom.

2.[GoPast] the stair.

3.[GoInto] the doorway.

Subtasks:

Turn left and exit the

bedroom. Walk past the

stairs into the rightmost

doorway.

Instruction:

Shortest Path

Start Position

Goal Position

Navigation Path

Figure 12: Visualization of the navigation path. Our method successfully exits the bedroom and goes past the stair, while the
baseline is stuck in the bedroom.

(b) ZSON

Kitchen

(a) A2 Nav (Ours)

Refrigerator

Hallway

1.[GoThrough] the kitchen.

2.[GoPast] the hallway.

3.[GoTo] the left by the

refrigerator.

Subtasks:

Walk through the kitchen and go

into the hallway on the left by the

refrigerator.

Instruction:

Shortest Path

Start Position

Goal Position

Navigation Path

Figure 13: Visualization of the navigation path. Our method successfully goes through the kitchen and finds the refrigerator,
while the baseline fails to do it.

E. More Visualization Results
In this section, we provide more visualization examples

for comparing the method between ZSON [36] and ours.
In Figure 11, the instruction requires the agent to go across
the kitchen area and exit this area through the door. Our
A2Nav successfully follows the instruction because of the
learned “GOTHROUGH” ability, which leads the agent to
completely go through the area. However, ZSON [36] just
goes to the kitchen area of a refrigerator, which directly
causes the task to fail. In Figure 12 the instruction requires
the agent to go past the stair which is outside the bedroom.
Our A2Nav successfully exits the bedroom, navigates past
the stair and then stop at the correct doorway. In contrast,
the ZSON model fails to exit the bedroom and finally stop
at the doorway of the bedroom incorrectly. In Figure 13, the
instruction requires the agent to get out of the kitchen and
stop near the refrigerator. Our A2Nav successfully walks
across the kitchen and goes by the hallway, finally finding
the target. ZSON [36] tries to go to the area which suggests
the higher confidence of the kitchen, which is the opposite
direction of the shortest path to the target. All examples
demonstrate the effectiveness of our action-aware agent.

