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Abstract

Large language models (LLMs) and Vision-Language Models (VLMs) have been
proven to excel at multiple tasks, such as commonsense reasoning. Powerful
as these models can be, they are not grounded in the 3D physical world, which
involves richer concepts such as spatial relationships, affordances, physics, layout,
and so on. In this work, we propose to inject the 3D world into large language
models and introduce a whole new family of 3D-LLMs. Specifically, 3D-LLMs
can take 3D point clouds and their features as input and perform a diverse set of
3D-related tasks, including captioning, dense captioning, 3D question answering,
task decomposition, 3D grounding, 3D-assisted dialog, navigation, and so on.
Using three types of prompting mechanisms that we design, we are able to collect
over 300k 3D-language data covering these tasks. To efficiently train 3D-LLMs,
we first utilize a 3D feature extractor that obtains 3D features from rendered multi-
view images. Then, we use 2D VLMs as our backbones to train our 3D-LLMs.
By introducing a 3D localization mechanism, 3D-LLMs can better capture 3D
spatial information. Experiments on ScanQA show that our model outperforms
state-of-the-art baselines by a large margin (e.g., the BLEU-1 score surpasses
state-of-the-art score by 9%). Furthermore, experiments on our held-in datasets for
3D captioning, task composition, and 3D-assisted dialogue show that our model
outperforms 2D VLMs. Qualitative examples also show that our model could
perform more tasks beyond the scope of existing LLMs and VLMs. Project Page: :
https://vis-www.cs.umass.edu/3dllm/.

1 Introduction

In the past several years, we have witnessed a surge of large language models (LLMs) (e.g., GPT4
[33]) that excel at multiple tasks, such as communication and commonsense reasoning. Recent
works have explored aligning images and videos with LLM for a new generation of multi-modal
LLMs (e.g., Flamingo [14], BLIP-2 [30]) that equip LLMs with the ability to understand and reason
about 2D images. However, as powerful as the models can be in communication and reasoning,
they are not grounded in the real 3D physical world, which involves richer concepts such as spatial
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3D Captioning

Describe the scene.

A small Asian restaurant with a 
Japanese architectural style.

3D Grounding

This is a gray and blue leather chair. 
It is placed on the right of 2 identical 

leather chairs. 

3D Question Answering

Question: Is this a famous building?

Answer: It’s Eiffel Tower and it’s 
well-known.
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Task Decomposition

I’m at the blue bed.
I want to get dressed.

1. Go to the wardrobe and open it.
2. Take out clothes.
3. Turn right and exit the room.
4. Walk to the bathroom.
5. Facing the mirror and dress.

3D-Assisted Dialog

Can you turn on the light?

3D Dense Captioning
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Object Navigation

I want to find a TV. I went from (1) 
to (2). Where should I go next?

Vision-Language Navigation

Instruction: Go past the sofa and …
I am at (1). Where should I go next?

Embodied QA

I am at (1). I want to know the color 
of the stove? What should I do?

You should go to (2) where the 
stove may exist.

(1)

(2)

You should go to (2).You should go to (3).

(1)

(2)

Generate a caption for the object.

A blue bed in the room. It has 
brown pillows on it. It has tables 
on the left side and a lamp 
standing on the table. On the right 
there is a backpack.

Figure 1: Examples from our generated 3D-language data, which covers multiple 3D-related tasks.

relationships, affordances, physics and interaction so on. Therefore, such LLMs pale in comparison
with the robots depicted in sci-fi movies - the assistants that could understand the 3D environments,
as well as perform reasoning and planning based on the 3D understandings.

To this end, we propose to inject the 3D world into large language models, and introduce a whole
new family of 3D-LLMs that could take 3D representations (i.e., 3D point clouds with their features)
as input, and perform a series of 3D-related tasks. By taking the 3D representations of scenes as
input, LLMs are blessed with twofold advantages: (1) long-term memories about the entire scene
can be stored in the holistic 3D representations, instead of episodic partial-view observations. (2) 3D
properties such as affordances and spatial relationships can be reasoned from 3D representations, far
beyond the scope of language-based or 2D image-based LLMs.

One major challenge of training the proposed 3D-LLMs lies in data acquisition. Unlike the vast
amount of paired 2D-images-and-text data on the Internet, the scarcity of 3D data hinders the
development of 3D-based foundation models. 3D data paired with language descriptions are even
harder to obtain. To address this, we propose a set of unique data generation pipelines that could
generate large-scale 3D data paired with language. Specifically, we make use of ChatGPT [33] and
devise three efficient prompting procedures for communication between 3D data and language. In
this way, we are able to obtain 300k 3D-language data covering a diverse set of tasks, including but
not limited to 3D captioning, dense captioning, 3D question answering, 3D task decomposition, 3D
grounding, 3D-assisted dialog, navigation and so on, as shown in Figure 1.
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The next challenge resides in how to obtain meaningful 3D features that could align with language
features for 3D-LLMs. One way is to train 3D encoders from scratch using a similar contrastive-
learning paradigm for the alignment between 2D images and language (e.g., CLIP [37]). However,
this paradigm consumes tremendous data, time, and GPU resources. From another perspective, there
are numerous recent works that build 3D features from 2D multi-view images (e.g., concept fusion
[26], 3D-CLR [20]). Inspired by this, we also utilize a 3D feature extractor that constructs 3D features
from the 2D pretrained features of rendered multi-view images. Recently, there are also quite a few
visual-language models (e.g., BLIP-2 [30], Flamingo [14]) utilizing the 2D pretrained CLIP features
for training their VLMs. Since our extracted 3D features are mapped to the same feature space as 2D
pretrained features, we can seamlessly use 2D VLMs as our backbones and input the 3D features for
the efficient training of 3D-LLMs.

One crucial aspect of 3D-LLMs, different from vanilla LLMs and 2D VLMs, is that 3D-LLMs are
expected to have a underlying 3D spatial sense of information. Thus, we develop a 3D localization
mechanism that bridges the gap between language and spatial locations. Specifically, we append 3D
position embeddings to the extracted 3D features to better encode spatial information. In addition,
we append a series of location tokens to the 3D-LLMs, and localization can be trained via outputting
location tokens given the language descriptions of specific objects in the scenes. In this way, 3D-LLMs
could better capture 3D spatial information.

To sum up, our paper has the following contributions:
• We introduce a new family of 3D-based Large Language models (3D-LLMs) that can take 3D

points with features and language prompts as input, and perform a variety of 3D-related tasks. We
focus on tasks beyond the scope of vanilla LLMs or 2D-LLMs, such as tasks about holistic scene
understanding, 3D spatial relationships, affordances and 3D planning.

• We devise novel data collection pipelines that could generate large-scale 3D-language data. Based
on the pipelines, we collect a dataset that has over 300k 3D-language data that cover a diverse
set of 3D-related tasks, including but not limited to 3D captioning, dense captioning, 3D question
answering, task decomposition, 3D grounding, 3D-assisted dialog, navigation, and so on.

• We use a 3D feature extractor that extracts meaningful 3D features from rendered multi-view
images. We utilize 2D pretrained VLMs as our backbones for efficient training. We introduce a 3D
localization mechanism for training the 3D-LLMs to better capture 3D spatial information.

• Experiments on held-out evaluation dataset, ScanQA, outperform state-of-the-art baselines. In
particular, 3D LLMs outperform baselines by a large margin on ScanQA (e.g., 9% for BLEU-1).
Experiments on held-in datasets for 3D captioning, task composition, and 3D-assisted dialogue
show that our model outperforms 2D VLMs. Qualitative studies further demonstrate that our model
is able to handle a diverse set of tasks.

• We plan to release our 3D-LLMs, the 3D-language dataset, and language-aligned 3D features of the
dataset for future research development.

2 Related Works
Large Language Models. Our work is closely related to large language models [4, 13, 38, 9, 34]
(LLMs) like GPT-3 [4] and PaLM [9], which are able to handle different language tasks with a single
model and show strong generalization abilities. These models are typically trained on massive textual
data with self-supervised training targets like predicting the next tokens [4, 38] or reconstructing the
masked tokens [13, 39]. To better align these LLMs’ predictions to human instructions, improve the
models’ generalization abilities on unseen tasks, a series of instruction tuning methods [35, 44] and
datasets [10, 12] have been proposed. In this work, we aim to inject the 3D world into large language
models, understanding rich 3D concepts such as spatial relations, affordances, and physics.

Vision-Language Pre-trained Models. Our work is also related to vision-language pre-trained
models that connect images and natural language [31, 32, 17, 37, 27]. Some research [37, 27] learn
to train models from scratch with massive image-language pairs and apply them to downstream tasks
like visual question answering [18, 51], captioning [7], and referring expression comprehension [50]
with finetuning. Other researchers have connected pre-trained vision models and pre-trained LLMs
with additional learnable neural modules like perceiver [2] and QFormers [31], leveraging perception
abilities in pre-trained vision models, and reasoning and generalization capacities in LLMs. Inspired
by these previous works, we plan to build an AI assistant that could understand the 3D world and
perform corresponding 3D reasoning and planning. This is not trivial and we need to overcome
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Box-Demonstration-Instruction based Prompting
Bounding-Box Context:
Room 1: table: [0.4, 0.1, 0.1], chair: [0.4, 0.3, 0.4]… Room2: desk: [0.5, 0.2, 0.3]
Instruction (Shortened Version):  
You are an  AI visual assistant / conversation generator / question generator in the room. 
You need to generate a high-level task and its low-level actions/ 4-10 round conversations
between a human and a robot assistant /  question-answer pairs about the scene.
Demonstration:  For Room 1: 

<Task Decomposition> High-Level Task: make up. Low-Level Actions: 1. go to the cabinet 2. take out 
cosmetics from the cabinet 3. bring the cosmetics to the table with mirror 4. open the lamp 5. make up
<3D-Assisted Dialog> Human: Bring me a toothbrush. Robot: Sure! Where is it?. Human: Maybe in the sink.  Robot: I have 
arrived mat the sink and find no toothbrush. I found an closed bathroom cabinet. Is it possible to contain what you need?...
<QA> Question: Is there a table between the chair and the tv? Answer: Yes. Generate similar responses for Room 2. 
Response : For Room 2:

<Task Decomposition> High-Level Task: Get ready for work. Low-Level Actions: 1. go to the toilet 2.  Wash hands in the sink 
cabine. 3. Gog to the mirror 4. Brush teeth and wash face 5. Turn on the lamp 6. Leave the room through the door
<3D-Assisted Dialog> Human: Turn on the light. Robot: Sure! Which light?. Human: The wall lamp.  Robot: I have turned it 
on. Is it bright enough?  Human: No. Are there other lights? Robot: I see a desk lamp.
<QA> Question:  Viewing the tv from the desk, is there a guitar on the right? Answer: Yes.

ChatCaptioner based Prompting

ChatGPT
Captioner

BLIP 
Answerer

Images from different views

What can you see from the far right?
Chair, desk

Can you tell me what’s on the desk?
A laptop

What can you see from the near left?
A bed

What’s the color of the bed?
Blue

…

Response: Here’s the description of the scene: This room 
has a work stations with a desk and a chair. The desk has 
a laptop on it and a curtain besides. It also has a blue bed, 
a blue sofa and a kitchen counter with chairs close to it.

Revision based Prompting
Context: The white chair is near the table. Instruction: Generate question answering pairs based on the caption.
Response: Question: What color is the chair near the table? Answer: The chair near the table is white. 

Aything else close to the desk?
A curtain

Figure 2: 3D-language data generation pipelines.

obstacles like how to handle the problem of data sparsity, how to align the 3D world with 2D images,
and how to capture 3D spatial information.

3D & Language. Another line of research that is similar to ours is 3D and language [5, 49, 8, 20, 1,
15, 24, 49, 3, 21, 19]. ScanQA [49] requires a model to answer questions related to the 3D world;
ScanRefer [5] asks a model to localize a region that the text expression refer to; 3D captioning [8]
tests models’ abilities to generate captions describing the 3D scenes. However, these 3D tasks and
their corresponding models are usually task-specific and could only handle cases within the same
distribution of the training sets without generalization. Different from them, we aim to build a 3D
model that could handle different tasks at the same time and enable new abilities like 3D-assistant
dialog and task decomposition.

3 3D-Language Data Generation

The community has witnessed the proliferation of multi-modal data thanks to easy access to a
tremendous amount of 2D image and text pairs on the internet. However, when it comes to 3D-related
data, obtaining multimodal resource is not easy, due to not only the scarcity of 3D assets, but also
the difficulty of providing language data for 3D assets. There are some existing datasets that contain
3D-language data (e.g., ScanQA [49], ScanRefer [5]). However, they are limited with regard to both
quantity and diversity, restricted to only one task per dataset. How to generate a 3D-language dataset
that can be utilized for all kinds of 3D-related tasks is well worth delving into.

Inspired by the recent success of large language models like GPT [33], we propose to leverage such
models for 3D-language data collection. Specifically, as shown in Figure 7, we have three ways to
prompt a text-only GPT for generating data. 1) boxes-demonstration-instruction based prompting.
We input the axis-aligned bounding boxes (AABB) of both the rooms and the objects in the 3D
scenes, providing information about the semantics and spatial locations of the scene. We then provide
specific instructions to the GPT model to generate diverse data. We give 0-3 few-shot demonstration
examples of the GPT model showing what kind of data it is instructed to generate. 2) ChatCaptioner
based prompting. We utilize techniques similar to [52], in which ChatGPT is prompted to ask a series

4



3D Scene

Multi View

Direct Reconstruct 3D Feature Question

Please tell me
where is the chair?

Answer: The chair is located at <loc3><loc56><loc34>.

Neural Field

gradSLAM
3D LLM

Perceiver

LLM

Unified Vocab.
…

<loc1> <loc2> <loc64><img> …

athe bed…what
…

is
2D Feature

2D Image Point Cloud

Figure 3: Overview of our 3D-LLM framework. The first two columns show our 3D feature extractor. We first
render a few multi-view images from the 3D scene, extract 2D dense features, and then construct 3D features
from these multi-view images using three kinds of methods. And then, the 3D features and input language
prompts are input to the 3D-LLMs to generate responses. We also propose a 3D localization mechanism to
better capture 3D spatial information.

of informative questions about an image and BLIP-2 [30] answers the questions. In order to collect
3D-related data, we input images from different views to BLIP-2, and ChatGPT is instructed to ask
questions and collect information of different regions to form a global 3D description of the entire
scene. 3) Revision based prompting. It can be used for transfer one type of 3D data to another,.

Given the prompting pipelines, GPT is able to generate various types of 3D-language data as
summarized in Figure 1. We show detailed prompts to generate all types of data in the Appendix.

We mainly establish our 3D-language dataset upon several 3D assets:
• Objaverse is a universe of 800K 3D objects. However, since the language descriptions were extracted

from online sources and not examined by humans, most objects have very noisy descriptions (e.g.,
with urls) or no descriptions. We utilize ChatCaptioner based prompting to generate high-quality
3D-related descriptions for the scenes.

• Scannet [11] is a richly-annotated dataset of approximately 1k 3D indoor scenes. It provides
semantics and bounding boxes of the objects in the scenes.

• Habitat-Matterport (HM3D) [41] is a dataset of 3D environments of embodied AI. HM3DSem [47]
further adds semantic annotations and bounding boxes for more than 200 scenes of HM3D.

4 3D-LLM
4.1 Overview
In this section, we introduce how we train our 3D-LLMs. We argue that it’s hard to train 3D-LLMs
from scratch, since our collected 3D-language dataset is still not the size of billion-scale image-
language dataset used to train 2D VLMs. Furthermore, for 3D scenes, there are no available pretrained
encoders like those for 2D images (e.g., CLIP ViT encoders). Thus, retraining 3D-language models
from scratch is data-inefficient and resource-heavy. Recently, researchers have proposed to extract
3D features from 2D multi-view images [26, 20]. Using these alignment methods, we could use
pretrained image encoders to extract image features, and then map the features to the 3D data. Since
the pretrained image features serve as inputs to 2D VLMs, the mapped 3d features of the same feature
space can also be seamlessly fed into the pretrained 2D VLMs, which we use as our backbones to
train 3D-LLMs. We also propose a 3D localization mechanism to boost the model’s ability to capture
3D spatial information. Figure 3 shows our framework.
4.2 3D Feature Extractor
The first step of training 3D-LLMs is to build meaningful 3D features that could be aligned with
language features. For 2D images, there exist feature extractors like CLIP, which learn visual models
from language supervision. The models are pretrained using billion-scale internet data of image-
language pairs. It’s hard to pre-train such feature learners from scratch, since there are no 3D-language
assets comparable to internet-scale image-language pairs in terms of quantity and diversity.
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On the contrary, numerous methods have been proposed to extract 3D features from 2D multi-view
images [26, 20, 16, 23]. Inspired by these works, we extract features for 3D points by rendering the
3D scenes in several different views, and construct 3D features from rendered image features.

We first extract pixel-aligned dense features for rendered images following [26]. Then, we utilize
three methods to construct 3D features from rendered image features. These methods are designed
for different types of 3D data.

• Direct Reconstruction. We directly reconstruct point cloud from rgbd images rendered from the
3D data using ground-truth camera matrixes. The features are directly mapped to the reconstructed
3D points. This method is suitable for rendered rgbd data with perfect camera poses and intrinsics.

• Feature Fusion. Similar to [26], we fuse 2D features into 3D maps using gradslam [28]. Different
from dense mapping methods, the features are fused in addition to depths and colors. This method
is suitable for 3D data with noisy depth map renderings, or noisy camera poses and intrinsics.

• Neural Field. We utilize [20], which constructs 3D compact representation using neural voxel field
[43]. Specifically, each voxel in the field has a feature in addition to density and color. Then we
align 3D features in the rays and 2D features in the pixels using MSE loss. This method is for 3D
data with RGB renderings but no depth data, and noisy camera poses and intrinsics.

In this way, we are able to obtain the < N,Dv >-dim 3D features of each 3D scene, where N is the
number of points in the point cloud, and Dv is the feature dimension.

4.3 Training 3D-LLMs

4.3.1 2D VLMs as backbones
In addition to the feature extractor, training 3D-LLMs from scratch is also non-trivial. In fact,
according to [30, 14], the training of 2D VLMs only begins to show "signs of life" after consuming
half a billion images. They usually use frozen and pre-trained image encoders such as CLIP to extract
features for 2D images. Considering that with 3D feature extractor, the 3D features can be mapped
into the same feature space as 2D images, it’s reasonable to use these 2D VLMs as our backbones.

The perceiver architecture proposed by [25] leverages an asymmetric attention mechanism to itera-
tively distill inputs into a tight latent bottleneck, allowing it to handle very large inputs of arbitrary
input sizes, thus can tackle different modalities. This architecture is utilized in VLMs like Flamingo
[14]. BLIP-2 [30] also utilizes a similar structure called QFormer. The 2D image features, output
from frozen image encoders, are flattened and sent to the perceiver to generate a fixed-sized input.
Given that our 3D features are in the same feature space as the 2D features by the 3D feature extractor,
and that perceiver is able to handle inputs of arbitrary input sizes of the same feature dimension,
point cloud features with arbitrary sizes could also be fed into the perceiver. Therefore, we use the
3D feature extractor to extract the 3D features in the same feature space as the features of the frozen
image encoders. Then, we use pretrained 2D VLMs as our backbones, input the aligned 3D features
to train 3D-LLMs with our collected 3D-language dataset.

4.3.2 3D Localization Mechanism
Apart from building 3D features, which can be aligned with language semantics, it’s also essential to
capture 3D spatial information. To this end, we propose a 3D localization mechanism that boosts 3D
LLMs’ abilities to absorb spatial information. It consists of two parts:

Augmenting 3D features with position embeddings Besides the 3D features aggregated from 2D
multi-view features, we also add position embeddings to the features. Suppose the feature dim is Dv .
We generate sin/cos position embeddings of the three dimensions, each has an embedding size Dv/3.
We concatenate the embeddings of all three dimensions, and concatenate them to the 3D features.

Augmenting LLM vocabularies with location tokens In order to align 3D spatial locations with
LLMs, we propose to embed 3D locations in the vocabularies, following [6] and [45]. To be specific,
the region to be grounded can be denoted as a sequence of discrete tokens representing the bounding
box in the form of AABB. The continuous corner coordinates of the bounding boxes are uniformly
discretized to voxel integers as location tokens ⟨xmin, ymin, zmin, xmax, ymax, zmax⟩. After adding
these additional location tokens, we unfreeze the weights for these tokens in the input and output
embeddings of language models.
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5 Experiments
We first introduce the architecture, and training and evaluation protocols. In Sec 5.1, we analyze the
held-out experiments on ScanQA Dataset. Sec 5.2 covers more analysis on held-in evaluation and
qualitative examples. Due to page limit, we put the following content into Appendix: 1) Held-Out
Experiments on 3DMV-VQA and object navigation; 2) Held-In Experiments on grounding and dense
captioning; 3) More ablative studies; 4) More qualitative examples.

Architecture We experiment on three backbone 2D VLMs for 3D-LLMs: Flamingo 9B, BLIP-2
Vit-g Opt2.7B, BLIP-2 Vit-g FlanT5-XL. For BLIP-2, during pre-training the 3D-LLMs, we initialize
the model from BLIP-2 checkpoints released in LAVIS library [29], and finetune the parameters for
the QFormer. 3D features are 1408-dim features, same as EVA_CLIP hidden feature dim used by
BLIP-2. We keep most parts of the LLMs (i.e., Opt and FlanT5) frozen, except the weights for the
newly-added location tokens in the input and the output embeddings. For Flamingo, we initialize the
model from the Flamingo9B checkpoint released in OpenFlamingo repository [2]. We finetune the
parameters for perceiver, gated cross attention layers, and the weights for additional location tokens
in the input and output embeddings. 3D features are 1024-dim features, same as CLIP hidden feature
dim used by Flamingo.

Training & Evaluation Datasets & Protocols We split our datasets into two genres, held-in datasets
and held-out datasets. Specifically, our 3D-language data generation pipeline generates the held-in
datasets of multiple tasks. we split the datasets into train/val/test sets (8:1:1). We utilize training
sets of held-in datasets for pre-training foundation 3D-LLMs, and their validation and test sets can
be applied for held-in evaluation. During pre-training, we mix the held-in datasets of all tasks. The
models are trained with the standard language modeling loss to output responses. Held-out datasets,
on the other hand, are not used in training the foundation 3D-LLMs. We use two held-out 3D
question answering datasets for held-out evaluation: ScanQA and 3DMV-VQA. We put the analysis
of experiments of 3DMV-VQA[20] in the supplementary material.

5.1 Held-Out Evaluation

We finetune our pretrained 3D-LLMs on the ScanQA dataset and compare with baseline models.

Baselines & Evaluation Metrics We include representative baseline models on the benchmark.
Particularly, ScanQA is the state-of-the-art method on the benchmark that uses VoteNet to obtain
object proposals, and then fuse them with language embeddings. ScanRefer+MCAN is a baseline
that identifies the referred object and the MCAN model is applied to the image surrounding the
localized object. VoteNet+MCAN detects objects in a 3D space, extracts their features, and uses them
in a standard VQA model. Notably, these baseline models all extract explicit object representations
from a pretrained localization module. In addition to these baselines, we also design several LLM-
based baselines. LLaVA is a visual instruction tuning that connects a vision encoder and LLM for
general-purpose visual and language understanding. We use its pretrained model and do zero-shot
evaluation on our dataset. We use a single random image as input. We use LLaVA 13B model. Single
Image + Pretrained VLMs use our 2D VLM backbones (i.e., flamingo and BLIP-2), replace the
3D inputs of 3D-LLMs with single image features to train the models, and then finetune on ScanQA
dataset. Multi-View Image + Pretrained VLMs use our 2D VLM backbones, replace the 3D inputs
of 3D-LLMs with concatenated features of multi-view images to train the models, and then finetune
on ScanQA dataset. We report BLEU, ROUGE-L, METEOR, CIDEr for robust answer matching.
We also use exact match (EM) metric.

Result Analysis We report our results on ScanQA validation set in Table 1, and results on test set in
Table 2. We observe a significant increase in the evaluation metrics. For example, for BLEU-1, our
model outperforms the state-of-the-art ScanQA model by ∼9% for validation set and ∼7% for test
set. For CIDER, we report a ∼5% gain compared to ScanQA, and much higher than other 3D-based
baselines. These results show that by injecting 3D into LLMs, the models can generate answers that
are much more similar to the ground-truth answers. Furthermore, 3D-based baselines use object
detectors like VoteNet to segment the objects, and then send per-object features into their models,
while our inputs are holistic 3D features without explicit object representations. This shows that our
model could perform visual reasoning about objects and their relationships even without explicit
object representations. We then examine whether 2D VLMs have the same ability. We find that by
taking single-view images or multi-view images as inputs, the performances drop much compared to
3D-LLMs. Specifically, multi-view images also contain information about the whole scene. However,
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B-1 B-2 B-3 B-4 METEOR ROUHE-L CIDER EM
VoteNet+MCAN* 28.0 16.7 10.8 6.2 11.4 29.8 54.7 17.3
ScanRefer+MCAN* 26.9 16.6 11.6 7.9 11.5 30 55.4 18.6
ScanQA* 30.2 20.4 15.1 10.1 13.1 33.3 64.9 21.0
LLaVA(zero-shot) 7.1 2.6 0.9 0.3 10.5 12.3 5.7 0.0
flamingo-SingleImage 23.8 14.5 9.2 8.5 10.7 29.6 52 16.9
flamingo-MultiView 25.6 15.2 9.2 8.4 11.3 31.1 55 18.8
BLIP2-flant5-SingleImage 28.6 15.1 9.0 5.1 10.6 25.8 42.6 13.3
BLIP2-flant5-MultiView 29.7 16.2 9.8 5.9 11.3 26.6 45.7 13.6
3D-LLM (flamingo) 30.3 17.8 12.0 7.2 12.2 32.3 59.2 20.4
3D-LLM (BLIP2-opt) 35.9 22.5 16.0 9.4 13.8 34.0 63.8 19.3
3D-LLM (BLIP2-flant5) 39.3 25.2 18.4 12.0 14.5 35.7 69.4 20.5

Table 1: Experimental results on ScanQA validation set. * Means the models use explicit object representations.
B-1, B-2, B-3, B-4 denote BLEU-1, BLEU-2, BLEU-3, BLEU-4 respectively. Our model outperforms all
baseline models for all evaluation metrics except for the EM metric.

BLEU-1 BLEU-4 METEOR ROUHE-L CIDER EM
SingleImage+MCAN 16.5 0.0 8.4 21.5 38.6 15.8
VoteNet+MCAN* 29.5 6.0 12.0 30.9 58.2 19.7
ScanRefer+MCAN* 27.9 7.5 11.9 30.7 57.4 20.6
ScanQA* 31.6 12.0 13.5 34.3 67.3 23.5
3D-LLM (flamingo) 32.6 8.4 13.5 34.8 65.6 23.2
3D-LLM (BLIP2-opt) 37.3 10.7 14.3 34.5 67.1 19.1
3D-LLM (BLIP2-flant5) 38.3 11.6 14.9 35.3 69.6 19.1

Table 2: Experimental results on ScanQA test set. * Means the models use explicit object representations. Our
model outperforms all baseline models for most of the evaluation metrics.

they have much lower performances compared to 3D-LLMs, probably because features of multi-view
images are disorganized, thus losing 3D-related information.

5.2 More Extensive Evaluation
Held-In Evaluation We carry out experiments on held-in datasets of three tasks: 3D captioning,
3D-assited dialog and task decomposition. The baselines include 2D VLMs as for the held-out
evaluation. We add one language-only baseline: FlanT5, which examines LLMs’ ability to complete
these tasks without any visual input. To evaluate the quality of responses, we include BLEU, ROUGE-
L, METEOR, CIDEr as our metrics. We report the held-in evaluation performances in Table 3. From
the table, we could see that 3D-LLMs could generate high-quality responses, outperforming both 2D
VLMs and language-only LLMs.

Tasks Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGH-L

3D Captioning

flamingo-SingleImage 29.0 17.9 12.5 12.1 12.4 28.2
flamingo-MultiView 29.5 18.6 13.7 12.4 14.0 29.0
BLIP2-flant5-SingleImage 30.3 18.3 14.5 12.0 13.1 30.9
BLIP2-flant5-MultiView 34.4 23.9 18.0 14.1 17.5 35.7
3D-LLM (flamingo) 36.1 24.5 18.7 15.6 17.6 35.8
3D-LLM (BLIP2-opt) 35.7 26.7 20.3 15.9 18.7 40.1
3D-LLM (BLIP2-t5) 39.8 31.0 24.7 20.1 17.7 42.6

3D-assisted Dialog

flant5 27.4 16.5 11.1 8.7 9.5 27.5
flamingo-SingleImage 29.4 18.7 11.3 9.4 10.0 26.8
flamingo-MultiView 30.6 21.3 11.9 9.1 10.4 27.9
BLIP2-flant5-SingleImage 28.4 17.3 10.6 9.1 10.2 27.4
BLIP2-flant5-MultiView 32.4 20.9 12.1 9.5 11.0 29.5
3D-LLM (flamingo) 35.0 22.8 15.4 10.6 16.0 34.2
3D-LLM (BLIP2-opt) 39.6 27.5 20.5 16.2 18.4 38.6
3D-LLM (BLIP2-flant5) 39.0 27.8 21.2 16.6 18.9 39.3

Task Decomposition

flant5 25.5 21.1 16.7 6.0 13.9 28.4
flamingo-SingleImage 31.4 23.0 18.8 7.1 15.6 30.6
flamingo-MultiView 33.1 24.7 21.4 7.3 16.1 33.2
BLIP2-flant5-SingleImage 32.2 25.3 18.2 6.9 15.0 31.0
BLIP2-flant5-MultiView 33.1 27.0 20.6 6.9 15.5 34.0
3D-LLM (flamingo) 32.9 25.6 20.2 6.4 16.0 33.5
3D-LLM (BLIP2-opt) 34.1 27.7 20.8 7.6 16.5 35.4
3D-LLM (BLIP2-flant5) 33.9 28.1 20.7 7.4 15.9 37.8

Table 3: Experimental Results on Held-In Datasets. 3D-LLMs outperform 2D VLMs.
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Describe the scene

Black and white table with stairs in it. Describe the scene

A 3D model of a small, old, and ruined castle 
with a doorway and stairs

Can you help me find my shoes?

Sure, where did you take them off last time?

I see a towel on a clothes hanger near the 
door, is it the one you need?

Sure. I see two towels hanging on the door. 
What else do you need me to do

Can you help me find my phone?

Of course! Do you remember where you last 
put it?

I think it might be on the desk.

I have arrived at the desk and I don’t see your 
phone.

I want to clean up the room. What should I do?

1. pick up the towel and put it in the trash can 
2. Empty the trash can 3. Pick up the cleaning 
solution and the sponge 4. clean the bathroom vanity 
with a cleaning solution and a sponge 5. clean the 
toilet with a cleaning solution and a sponge 6. clean 
the shower curtain with a cleaning solution and a 
sponge 7. clean the mirror with a cleaning solution 
and a sponge 8. refill the toilet paper dispenser with 
toilet paper 9. refill the soap dispenser with soap

I want to prepare documents. What shall I 
do next?

1. go to the document cabinet 2. open the 
document cabinet 3. select the document that 
needs to be prepared

Where is one of the refrigerators located?

Where is the wooden steel desk located?

corner of room

I think I left them near the sink.

I found your shoes, they are next to the sink. 
Do you need anything else?

Yes, I also need a towel.

No, I need a dry towel. Can you find one for me?

left of window

There is a wooden table, placed next to the stairs

Describe the object

Wooden Table by the wall

Figure 4: Qualitative examples of 3D-LLM’s prediction.

Qualitative Examples In Figure 4, we show qualitative examples of 3D-LLM’s predictions. We can
see that our 3D-LLM is able to perform a variety of tasks.

6 Conclusion

In this paper, we propose a new family of 3D-LLMs that can take 3D representations as inputs and
generate responses. We introduce a series of 3D-language data generation pipelines to generate a
dataset of 300K 3D-language pairs to train our 3D-LLMs, including dense captioning, 3D question
answering, task decomposition, 3D grounding, 3D-assisted dialog, navigation, and so on. Our
3D-LLMs leverage 2D pretrained VLMs as backbones and a novel 3D localization mechanism.
Experiments show that our 3D-LLMs outperform state-of-the-art baseline models on ScanQA datasets,
and could perform a diverse set of 3D-related tasks. A limitation is that the 3D feature extractor relies
on 2D multi-view images, and thus all 3D scenes need to be rendered so that they can be trained in
3D-LLMs, which introduces an additional rendering process.
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A 3D-Language Data

A.1 Prompts

In figure 5 and 6, we show two exemplar prompts for generating task decomposition data and
3D-assisted dialog data. Specifically, they are generated using the boxes-demonstration-instruction
method described in the paper. For each sample in the few shot samples, the "content" has the
bounding boxes of the scenes, and the "response" refers to human-written responses for demonstration.
For query, it consists of the bounding boxes of scenes that we query the ChatGPT to give us responses.

messages=[{“role”: “system”, “content” “You are an AI 
visual assistant that can analyze a 3D scene. All object instances in this 3D 
scene are given, along with their center point position. The center points 
are represented by a 3D coordinate (x, y, z) with units of meters. Using the 
provided object instance information, design a high-level task that can be 
performed in this 3D scene. Besides, decomposing this high-level task into 
a sequence of action steps that can be performed using the instances in this 
3D scene. \n\n Remenber, the high-level task and action steps must be able 
to be performed in the 3D scene using the given object instances.
”}]
for sample in fewshot_samples:

messages.append({“role”: “user”, “content”: 
sample[‘content’]})

messages.append({“role”: “assistant”, 
“content”: sample[‘response’]})
messages.append({“role”: “user”, “content”: 
‘\n’.join(query)})

Figure 5: Prompts on generating task decomposition data

messages=[{“role”: “system”, “content” “You are a 
conversation generator in a room. All object instances in this room are 
given, along with their center point position. The center points are 
represent by a 3D coordinate (x, y, z) with units of meters. You need to 
generate 4~10 round convervation between a human and a robot assistant. 
\n\nThe human know all information in this room, including all objects 
described above and all small things that are not visible now. The human 
will ask the robot to do a high-level task. The robot will tell its observation 
and its state (e.g., location) to the human and will ask for help when it is 
ambiguous about the task. Remenber, the high-level task should be done in 
this room. ”]

for sample in fewshot_samples:
messages.append({“role”: “user”, “content”: 

sample[‘content’]})
messages.append({“role”: “assistant”, 

“content”: sample[‘response’]})
messages.append({“role”: “user”, “content”: 
‘\n’.join(query)})

Figure 6: Prompts on generating 3D-assisted dialog data

A.2 Data Distribution

In figure 7, we show the distribution of our data.

B Experiments

B.1 Implementation Details

Using Pretrained BLIP-2 as backbones, we train 3D-LLMs for 100K steps, and validate every 1K
step. We run the models on 8 nodes, where each node has 8 V100s. The batch size is 16 for each node.
The AdamW optimizer is used, with β1 = 0.9, β2 = 0.999, and a weight decay of 0.05. Additionally,
we apply a linear warmup of the learning rate during the initial 1K steps, increasing from 10−8 to
10−5, followed by a cosine decay with a minimum learning rate of 0.

3D-LLMs based on pretrained flamingo are trained using the AdamW optimizer with global norm
clipping of 1, no weight decay for the perceiver resampler and weight decay of 0.1 for the other
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Figure 7: Data distribution on different types for our 3D-language data

trainable parameters. The learning rate is increased linearly from 0 to 10−4 up over the first 5000
steps then held constant for the duration of training. The model is trained on 8 A100s. The batch size
is 16. We use Distributed Data Parallel (DDP) to train the model.

B.2 Held-Out Evaluation

B.2.1 3DMV-VQA

We finetune our pretrained 3D-LLMs on the 3DMV-VQA dataset and compare with baseline models.

Baselines & Evaluation Metrics We include representative baseline models on the benchmark.
NS-VQA is the neuro-symbolic method that first extracts object proposals and then perform neuro-
symoblic reasoning. 3D-Feature + LSTM is a baseline that extracts 3D features first and then
concatenates with LSTM to output final answers. 3D-CLR is the state-of-the-art method that extracts
3D feature fields first, and then perform neuro-symbolic reasoning. In addition to these baselines, we
also add 2D VLMs baselines like we did for ScanQA.

Methods Concept Counting Relation Comparison Overall
NS-VQA* 59.8 21.5 33.4 61.6 38.0
3D-Feature+LSTM 61.2 22.4 49.9 61.3 48.2
3D-CLR* 66.1 41.3 57.6 72.3 57.7
flamingo-SingleImage 58.7 18.5 38.4 60.1 40.3
flamingo-MultiView 60.0 18.3 40.2 61.4 41.6
BLIP-SingleImage 58.0 20.4 42.3 62.3 43.1
BLIP-MultiView 61.9 21.1 48.0 62.3 47.1
3D-LLM (flamingo) 68.9 32.4 61.6 68.3 58.6
3D-LLM (BLIP5-opt) 63.4 30.7 57.6 65.2 54.9
3D-LLM (BLIP2-flanT5) 68.1 31.4 55.1 69.7 54.6

Table 4: Experimental results on 3DMV-VQA dataset. * denotes using explicit object representations and
neuro-symbolic reasoning.

Result Analysis Table 4 shows the performances on 3DMV-VQA. We can see that 3D-LLMs
outperform state-of-the-art baseline model in the question types of concept and relation, and also in
the overall performance. Our model also outperforms 3D-Feature+LSTM, demonstrating the power
of LLMs over vanilla language models with similar 3D features as inputs. Overall, 3D-based methods
outshine 2D-based versions of the methods. Our 3D-LLMs outperform their corresponding 2D VLMs
with image input, further demonstrating the importance of 3D representations for 3D-LLMs.
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B.2.2 3D Grounding (Referring) on ScanRefer

In order to examine 3D-LLMs’ 3D localization abilities, we carry out a held-out experiment on
ScanRefer benchmark. Specifically, ScanRefer benchmark requires the models to output object
locations given a referring sentence of the objects. We finetune 3D-LLMs on ScanRefer training set
and report the results on ScanRefer validation sets.

Baselines We include the baseline models in the original ScanRefer paper. Specifically,
OCRand(OracleCatRand) use an oracle with ground truth bounding boxes of objects, and predict the
box by simply selecting a random box that matches the object category. Vote+Rand(VoteNetRand)
uses the predicted object proposals of the VoteNet [36] backbone and selects a box randomly with
the correct semantic class label. SCRC & One-stage are 2D image baselines for referring expression
comprehension by extending SCRC [22] and One-stage [48] to 3D using back-projection. Since 2D
referring expression methods operate on a single image frame, we construct a 2D training set by
using the recorded camera pose associated with each annotation to retrieve the frame from the scan
video with the closest camera pose. At inference time, we sample frames from the scans (using every
20th frame) and predict the target 2D bounding boxes in each frame. We then select the 2D bounding
box with the highest confidence score from the bounding box candidates and project it to 3D using
the depth map for that frame. ScanRefer uses a pretrained VoteNet backbone with a trained GRU for
selecting a matching bounding box.

Evaluation Metrics To evaluate the performance of our method, we measure the thresholded accuracy
where the positive predictions have higher intersection over union (IoU) with the ground truths than
the thresholds. Similar to work with 2D images, we use ACC@kIoU as our metric, where the
threshold value k for IoU is set to 0.25. In addition to that, we also report the Average IoUs of our
3D-LLMs. Since our model focuses on 3D localization of objects, we also report the distances from
the centers of predicted bounding boxes to the ground-truth bounding boxes.

Result Analysis In Table 5, we show the results on ScanRefer. As we can see, our 3D-LLMs can
have decent performances on grounding and referring, and outperform most of the baselines, showing
that 3D-LLMs have the ability of 3D localization. Notably, the baseline models use ground-truth
bounding boxes, or a pre-trained object detector to propose bounding boxes and classes for object
proposals. Then, they use scoring modules to vote for the most likely candidate. Our method does
not use any explicit object proposal module or ground truth bounding boxes, but outputs the locations
of the bounding boxes directly using LLM losses for predicting tokens, while still outperforming
most of the baselines. We could also see from the Avg. Dist metric the bounding boxes we predict is
very close to the ground-truth brounding boxes.

OCRand Vote+Rand SCRC One-stage ScanRefer 3D-LLM 3D-LLM 3D-LLM
(flamingo) (BLIP2-opt) (BLIP2-flant5)

ACC@0.25 29.9 10.0 18.7 20.4 41.2 21.2 29.6 30.3
Avg. IoU / / / / / 19.9 23.1 24.9
Avg. Dist. / / / / / 1.1 1.07 1.03

Table 5: Experimental Results on ScanRefer

B.2.3 Object Navigation

We show the ability of our 3D-LLM to progressively understand the environment and navigate to a
target object. We formulate the navigation process as a conversation. At each time step, we online
build a 3D feature from the partially observed scene. We feed this feature, current agent location, and
history location to the 3D-LLM for predicting a 3D waypoint the agent should go for. We then use
an off-the-shelf local policy [46] to determine a low-level action (e.g., go forward, turn left or right)
for navigating to the waypoint. The 3D-LLM predicts “stop” if it believes the agent has reached the
target object.

In Figure 8, we visualize a conversation process and its corresponding navigation trajectory. At the
beginning when the target object is not observed, the 3D-LLM predicts a waypoint that leads the
agent to explore the area most likely containing the target object. When the agent observes the target
object (i.e., red box in the partially observed scene), the 3D-LLM predicts a waypoint leading the
agent to it. The example episode is performed on the HM3D dataset [40] using Habitat simulator [42].
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I want to find sofa. I am now at location <loc19>  <loc0>  <loc32> .  I have been to []. 
Where should I go next?

location <loc19>  <loc0>  <loc42> 
Output

Partially Observed Scene

Conversation

Predict waypoint
Agent position

Object goal

Top Down Map

Visualization

Predict waypoint
Agent position

Object goal

Top Down Map
location <loc17>  <loc0>  <loc58>

Output

I want to find sofa. I am now at location <loc19>  <loc0>  <loc42> .   
I have been to [location<loc19>  <loc0>  <loc32> ].  Where should I go next?

Partially Observed Scene

location <loc27>  <loc0>  <loc37>
Output

I want to find sofa. I am now at location <loc10>  <loc0>  <loc63> .  I have been to [location 
<loc19>  <loc0>  <loc32>,location <loc19>  <loc0>  <loc42> ].  Where should I go next?

Partially Observed Scene

Predict waypoint
Agent position

Object goal

Top Down Map

location <loc27>  <loc0>  <loc37>
Output

I want to find sofa. I am now at location <loc31>  <loc0>  <loc63> .   I have been to [<loc19>  
<loc0>  <loc32> , location <loc19>  <loc0>  <loc42>, location<loc10>  <loc0>  <loc63> ].  

Where should I go next?

Partially Observed Scene

Predict waypoint
Agent position

Object goal

Top Down Map

Input

Input

Input

Input

Figure 8: Visualization of an object navigation episode.

B.3 Held-In Evaluation

B.3.1 3D Dense Captioning

In Table 6, we show the results of 3D dense captioning. Specifically, given a 3D bounding box,
models are expected to output the caption describing what’s in that region. We can see that our
3D-LLMs outperform image-based baselines.

BLEU-1 BLEU-2 BLEU-3 BLEU4 METEOR ROUGH-L
flamingo-SingleImage 21.5 10.5 6.9 4.1 11.1 23.4
flamingo-MultiView 24.4 12.3 7.1 4.6 11.9 25.8
BLIP-SingleImage 23.0 11.7 7.7 4.6 11.3 23.8
BLIP-MultiView 25.3 14.1 9.0 5.6 12.5 24.9
3D-LLM (flamingo) 29.6 16.8 10.6 5.9 11.4 29.9
3D-LLM (BLIP2-opt) 32.5 18.7 11.9 6.5 11.7 31.5
3D-LLM (BLIP2-flant5) 34.3 20.5 13.2 8.1 13.1 33.2

Table 6: Experimental Results on Held-In 3D Dense Captioning Dataset.

B.4 More Ablative Studies

B.4.1 Ablative Studies on Flamingo Perceiver

We first examine how the perceiver resampler of Flamingo benefits the training. We carry out an
ablative experiment where we take out the perceiver of the flamingo model. Table 7 shows the results.
From the table, we can see that the perceiver module is indeed beneficial for the training of 3D-LLM.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGH_L CIDER EM
wo/ perceiver 29.2 17.2 11.2 7.4 11.4 30.4 58.9 20.6
w/ perceiver 30.3 17.8 12 7.2 12.2 32.3 59.2 20.4

Table 7: Ablative Study on the Perceiver of Flamingo Model.

B.5 More Qualitative Examples

We show more qualitative examples in Figure 9, 10, 11.
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Describe the scene

A tall commercial building with glass 
windows. It’s not surrounded by anything.

Can you tell me more about this building? Can you help me find my shoes?

I want to clean up the room. What should I do?

A yellow building  with white roof. It’s 
a residential building. 

A bathroom with bath, shower, mirror, 
toilet.

A two-story wooden house. A wooden table is surrounded by
chairs. The windows are made of glass.

A castle with red roof. It’s on green 
grass. It’s surrounded by buildings.

Tell me more about this building. Describe the building. Describe the 3D scene.

Generate a sentence about this room. Describe the scene. What’s in the 3D scene?

Figure 9: Qualitative Examples on 3D Captioning
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Sure. Where do you think you left it?

Can you help me find my book?

I think I left it on the desk

I have arrived at the desk. I see a few 
books here. Which one do you need?

Sure! What do you want to make?

Can you help me prepare dinner?

I want to make spaghetti carbonara. Can 
you help me find the ingredients?

I have the blue box of spaghetti and eggs 
from the close doors. Anything else?

Sure! Where do you usually keep it?

Can you help me find my phone?

It’s usually on my desk.

I’m at the desk and don’t see a phone. Is 
there any other place you might keep it?

Sometimes I leave it on the bed

I found it under the pillow. Anything else 
you need?

It’s a brown cabinet. 

Describe the object.

A white square box.

What’s in the region?

A picture on the wall.

What’s this?

Front of desk.

Where’s the chair located

It’s Chinese style.

What’s the style of the building?

White

What’s the color of the bathroom stall 
door?

White.

What’s the color of the building?

A mirror. 

What’s above the sink?

2

How many shelves does the bookshelf 
have?

1. go to the trash can 2. empty the 
trash 3. go to the paper towel 
dispenser 4. refill the paper towels 5. 
go to the chair 6. clean the chair 7 go 
to the table 8. clean the table  9. go to 
the door 10. clean the door 11. go to 
the window 12. clean the window 13. 
sweep and mop the floor.

I want to clean up the room. What should 
I do?

1. enter the room through the door 2. 
go to the cabinets and take out the 
documents 3. go to the table and 
arrange the documents 4. exit the 
room through the door

I want to prepare for a meeting. What 
should I do?

1. go to the kitchen counter 2. take 
the coffee maker  3. fill water from 
the sink 4. add coffee to the coffee 
maker 5. wait for the coffee

I want to prepare a cup of coffee. What 
should I do?

This is a gray cabinet. It’s to the left of a 
white cabinet.

The desk is against the wall. there are many 
objects on it and a chair in front of it.

The desk is against the wall. there are many 
objects on it and a chair in front of it.

Figure 10: Qualitative Examples on 3D-Assisted Dialog, 3D Dense Captioning and Question Answering.
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Sure. Where do you think you left it?

Can you help me find my book?

I think I left it on the desk

I have arrived at the desk. I see a few 
books here. Which one do you need?

Sure! What do you want to make?

Can you help me prepare dinner?

I want to make spaghetti carbonara. Can 
you help me find the ingredients?

I have the blue box of spaghetti and eggs 
from the close doors. Anything else?

Sure! Where do you usually keep it?

Can you help me find my phone?

It’s usually on my desk.

I’m at the desk and don’t see a phone. Is 
there any other place you might keep it?

Sometimes I leave it on the bed

I found it under the pillow. Anything else 
you need?

It’s a brown cabinet. 

Describe the object.

A white square box.

What’s in the region?

A picture on the wall.

What’s this?

Front of desk.

Where’s the chair located

It’s Chinese style.

What’s the style of the building?

White

What’s the color of the bathroom stall 
door?

White.

What’s the color of the building?

A mirror. 

What’s above the sink?

2

How many shelves does the bookshelf 
have?

1. go to the trash can 2. empty the 
trash 3. go to the paper towel 
dispenser 4. refill the paper towels 5. 
go to the chair 6. clean the chair 7 go 
to the table 8. clean the table 9. go to 
the door 10. clean the door 11. go to 
the window 12. clean the window 13. 
sweep and mop the floor.

I want to clean up the room. What should 
I do?

1. enter the room through the door 2. 
go to the cabinets and take out the 
documents 3. go to the table and 
arrange the documents 4. exit the 
room through the door

I want to prepare for a meeting. What 
should I do?

1. go to the kitchen counter 2. take 
the coffee maker 3. fill water from 
the sink 4. add coffee to the coffee 
maker 5. wait for the coffee

I want to prepare a cup of coffee. What 
should I do?

This is a gray cabinet. It’s to the left of a 
white cabinet.

The desk is against the wall. there are many 
objects on it and a chair in front of it.

The desk is against the wall. there are many 
objects on it and a chair in front of it.

Figure 11: Qualitative Examples on Task Decomposition and Grounding (Referring).
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